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an algebraic turbulence model, the team also investigated the use of two-equation 
turbulence models.  Finally, the team coupled the fluid dynamics and vehicle 
dynamics together with a subroutine that solves for the vehicle dynamics at 
each time step using the six vector equations of Newton's laws of motion and 
seven additional kinematic relations. 

The research team performed a substantial number of steady and unsteady computations 
to validate various elements of the prediction method, improve confidence in the use 
of the method, and check the feasibility of using the method to calculate flow fields 
of increasing complexity.  For test cases where experimental data or analytical 
solutions exist, the quality of agreement with the computations has been considered 
reasonable to excellent. The steady-flow test cases concentrate on the ability of 
the code to compute boundary layers, three-dimensional separation, and vortical flows- 
including the flow over an appended vehicle. The unsteady-flow cases focus on prescribe 
maneuvers, rotating propulsors, and an initial investigation of moving control surfaces. 
Although no experimental data exists for the last few test cases, these cases give 
examples of how this new method can compute unsteady maneuvers, including crashback, 

with the fluid and vehicle dynamic coupled together. 



Abstract 

A team of researchers from the Engineering Research Center at Mississippi State 
University and the Applied Research Laboratory at The Pennsylvania State University have developed 
a physics-based method that will lead to a means of accurately predicting the forces and moments 
acting on a maneuvering, self-propelled, appended, underwater vehicle and the resulting vehicle 
motion.  This methodology has been developed in order to supplement and, eventually, replace the 
traditional correlation-based means of "predicting" the maneuvering characteristics of a submerged 
vehicle.  One primary difference exists between this new physics-based method and traditional 
correlation-based methods.  While the traditional methods use empirical correlations from model-scale 
experiments to determine the hydrodynamic forces and moments acting on a vehicle during a 
maneuver, this new method numerically solves for the fluid dynamics using the three-dimensional, 
time-dependent Reynolds-averaged Navier-Stokes equations on time-dependent curvilinear coordinates. 
Considering that large-scale simulations of a maneuvering vehicle at high Reynolds number will 
require large amounts of floating-point arithmetic and considerable storage capacity, the research team 
also investigated the use of high-performance parallel computing for making these types of large 
computations.  In addition, while the baseline code used an algebraic turbulence model, the team also 
investigated the use of two-equation turbulence models.  Finally, the team coupled the fluid dynamics 
and vehicle dynamics together with a subroutine that solves for the vehicle dynamics at each time step 
using the six vector equations of Newton's laws of motion and seven additional kinematic relations. 

The research team performed a substantial number of steady and unsteady computations to 
validate various elements of the prediction method, improve confidence in the use of the method, and 
check the feasibility of using the method to calculate flow fields of increasing complexity.   For test 
cases where experimental data or analytical solutions exist, the quality of agreement with the 
computations has been considered reasonable to excellent.  The steady-flow test cases concentrate on 
the ability of the code to compute boundary layers, three-dimensional separation, and vortical flows- 
including the flow over an appended vehicle.  The unsteady-flow cases focus on prescribed 
maneuvers, rotating propulsors, and an initial investigation of moving control surfaces.  Although no 
experimental data exists for the last few test cases, these cases give examples of how this new method 
can compute unsteady maneuvers, including crashback, with the fluid and vehicle dynamics coupled 
together. 
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I 
I 

1.  Introduction 

The purpose of any underwater vehicle is to be able to maneuver through the water in 
order to accomplish some specified mission.  Unfortunately, current methods to "predict" the 
maneuvering characteristics of underwater vehicles require a number of expensive tests with model- 
scale hardware.  Even with this current methodology, most extreme maneuvers cannot be predicted. 
Also, modifications to the vehicle can result in severe changes in the maneuvering characteristics- 
changes that these current methods cannot confidently predict.  This report describes the development 
of a new methodology for predicting the maneuvering characteristics of underwater vehicles. 
However, some background information on the current status of maneuvering "predictions" is 
necessary to show precisely why this new methodology is required. 

1.1  Maneuvering 

Any controlled change or retention of the heading, depth, or speed of an underwater 
vehicle is classified as a maneuver.  These maneuvers can be identified as path keeping, path 
changing, or speed changing~with path keeping being primarily related to the stability of the vehicle. 

Path changing maneuvers include changes in heading or depth, as well as tactical and 
uncontrolled turns. Various vehicles respond differently to changes in heading or depth, with 
differences occurring in the time to perform the change and the amount of overshoot.  As with all 
maneuvers, the response of the vehicle varies with speed, control surface angles, and the time 
required to activate the maneuvering order.  Some vehicles are relatively benign with respect to out- 
of-plane forces and moments, but some vehicles are quite sensitive.  For instance, vehicles intending 
to turn in the horizontal plane may or may not have significant motion in the vertical plane. 
Depending on the stability and response of the vehicle, tactical turns use prescribed settings of the 
control surfaces during different phases of the turn.  During the turn, the vehicle will undergo a loss 
in speed and a certain amount of roll, while establishing a particular position after the specified new 
heading has been reached.  In fact, large rudder angles can lead some vehicles to experience a large 
roll, called a snap roll.  The vehicle requires the use of sternplanes, fairwater planes (sail planes), or 
bow planes in order to prevent an uncontrolled turn with changes in depth, pitch, and roll. 

Speed changing maneuvers involve the acceleration and deceleration of the vehicle by 
changing the horsepower and, thus, the angular velocity of the propulsor.  Again, knowledge of the 
stability and response of the vehicle allows one to prescribe settings of the control surfaces in order to 
maintain course and depth.  The acceleration and deceleration characteristics of the vehicle include the 
time to attain the specified speed and the distance the vehicle has moved during this amount of time. 
Deceleration can involve decreasing the angular velocity of the propulsor and allowing the vehicle to 
coast, or it can involve a crashback maneuver-where the angular velocity of the propulsor changes 
from rotating in its design direction to rotating in the reverse direction.  Reversing the direction of 
propulsor rotation is also used during backing.  Further complications occur since the vehicle 
decelerates during most path changing maneuvers. 

Other maneuvers involve the recovery from emergencies.   These emergencies can involve 
casualties where the rudder jams or where the sternplane jams in either the dive or rise position. 
When scheduled recovery measures are taken, the vehicle can experience excursions in depth and 

1 



pitch, as well as roll-excursions that depend on the speed and the jam angles.  Other emergencies 
may require a crashback maneuver while the vehicle is at some angle of attack. 

1.2 Vehicle Motion 

The motion of a vehicle can be described by Newton's laws of motion, with the coordinate 
system fixed to the vehicle.  These general Euler equations of unsteady motion can be written as 

m — + QXffiv = y\F 
dt ^ 

and 

^  + G)*A  =TM . 
dt ^ 

These six vector equations represent motion with six degrees of freedom (6DOF). In translation, the 
vehicle can surge (u) in the axial direction (x), sway (v) in the horizontal direction (y), and heave (w) 
in the vertical direction (z); while in rotation, the vehicle can roll ip) about the x-axis, pitch (q) about 
the y-axis, and yaw (r) about the z-axis. Essentially, the inertial terms on the left-hand side of these 
equations remain the same for most vehicles. If the origin of the coordinate system does not coincide 
with the center of gravity, or if the vehicle has a variable mass or a variable position of the center of 
gravity, the equations of motion will require additional inertial terms. 

1.3 Forces and Moments on a Vehicle 

The maneuvering characteristics of a vehicle depend on the external forces and moments, 
as well as the response of the vehicle to those forces and moments.   In order to determine these 
maneuvering characteristics, one must compute these external forces and then determine the moments 
that these forces create about the center of gravity of the vehicle.  First, one must compute the 
vertical forces resulting from weight and buoyancy.  The weight acts vertically downward through the 
center of gravity, which can be altered somewhat by changing the ballast.  Through Archimedes' 
Law, a buoyancy force will act vertically upward through the center of buoyancy, with the buoyancy 
force being equal and opposite to the weight of the water displaced by the vehicle.  Imlay [1964] 
developed expressions of the weight and buoyancy terms within the right-hand side of the equations of 
motion.   For positive stability, the center of gravity must be lower than the center of buoyancy.  Any 
difference in the longitudinal position of the centers of gravity and buoyancy will result in a 
longitudinal inclination or trim, while any difference in the magnitude of weight and buoyancy will 
result in positive or negative buoyancy (with a lighter weight giving positive buoyancy).  A vehicle in 
equilibrium will have neutral buoyancy and zero trim. 

The action of the propulsor will also greatly affect the maneuvering characteristics of a 
vehicle, both directly and indirectly.  First, the propulsor will directly generate forces and moments 
on the vehicle.  For straight-and-level flight, one designs the propulsor to generate only time-average 
values of thrust and torque, with these magnitudes changing with advance ratio.  However, changes in 
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the angle of the inflow or the existence of nonuniformities in the inflow can result in forces in the 
horizontal or vertical planes.  Even very small side forces can have a great impact on the 
maneuvering characteristics since the moment arm-the distance between the propulsor and the center 
of gravity-is large.  Second, the propulsor can indirectly affect maneuvering by inducing changes in 
the flow over the stern of the vehicle. 

The primary forces and moments experienced by a maneuvering vehicle result from the 
static pressures and shear stresses on the hull and on any appendages.  Integration of the entire 
pressure and shear-stress fields gives a resultant hydrodynamic force, and the location of where this 
force acts relative to the center of gravity of the vehicle gives the resultant hydrodynamic moment. 
Traditionally, the components of the hydrodynamic forces and moments acting on the hull and on 
each appendage are treated as a function of the motion state variables.  For example, the axial 
external force would be 

Fx = F(u,v,w,p,q,r,ü,v,w,p,q,f) , 

where the dot indicates a time derivative.  In addition, the hydrodynamic forces and moments on the 
control surfaces are treated as a function of the control state variables, such as fin deflection, 5, or 

Fx = F(6,ö,8) . 

Propulsor forces are treated as a function of angular velocity, advance ratio, efficiency, or other 
characteristic variables.  At this point, the traditional approach allows one to represent these 
functional expressions with a truncated Taylor series.  If one were to neglect derivatives higher than 
first-order derivatives, one could obtain the linearized equations of motion—assuming the inertial 
terms were also linearized.  However, this assumption allows for only small changes in the motion 
state variables and in the control state variables. 

Most of the techniques currently being used to compute the hydrodynamic forces and 
moments for a maneuvering vehicle represent the forces and moments with a truncated Taylor series 
that includes some second- and third-order derivatives, including cross derivatives that model the 
cross-coupling effect of some of the variables.  Originally introduced in aerodynamics, this approach 
uses empirical correlations for the "derivatives" in the truncated Taylor series.  Derivatives of the 
forces and moments with respect to motion state variables are often called stability derivatives, while 
derivatives with respect to control state variables are often called control derivatives.  The difficulty 
occurs when one wants to determine time-dependent coefficients that represent these hydrodynamic 
derivatives during various unsteady maneuvers.  In the past, experiments have been used to obtain 
empirical coefficients, although some theoretical results have also been incorporated. 

Much of the determination of empirical hydrodynamic coefficients has involved captive- 
model tests.  One can perform these tests with either a fully-appended model or with a systematic 
addition of the appendages~in order to evaluate the contribution of each appendage to the total forces 
and moments.   Straight-line tests within a towing tank using a model at angles of yaw and/or pitch 
(with and without fin deflection) have been used for many years to obtain hydrodynamic coefficients. 
Additional coefficients result from towing tank tests using a planar motion mechanism, where the 
model oscillates during the test.   Other oscillator techniques have also been employed.   Many 
coefficients involving rotation have been obtained from a rotating-arm facility.  Again, the model can 
be set at various yaw and pitch angles-as well as various fin deflections-during the rotating test. 
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Finally, the determination of some control derivatives involves the operation of control surfaces in a 
water tunnel, separate from the hull. 

While these types of captive-model tests have been used for many years, several problems 
do exist.  First, for the case of very large vehicles such as submarines, the model experiments are run 
with a much smaller Reynolds number than exists at full scale.  Differences in Reynolds number can 
change the location of transition zones and separation lines-which, in turn, can change the 
distribution of static pressures and shear stresses and, thus, the resulting hydrodynamic forces.   The 
location of separation lines can also be affected by the crossflow over the model in straight-line tests. 
During these tests, the crossflow shows little variation over the length of the model, while this 
crossflow varies significantly during an actual vehicle maneuver.  The effects of bounding walls, free 
surfaces, and support struts can also change the pressure distribution from what one might obtain 
using a free-running model.  Because of the strong influence of the propulsor on hydrodynamic 
derivatives, one should acquire all hydrodynamic force measurements with the propulsor operating~at 
some specified advance ratio. In addition, for rotating-arm tests, one must accelerate the model to the 
proper test speed and acquire all the data within a single revolution. Otherwise, the model will run 
through its own wake.  Also, rotation data will be limited by the radius of the turn available within 
the facility.  For control surfaces tested in water tunnels, the lack of a hull and any gaps adjacent to 
moving parts of the control surface can adversely affect the hydrodynamic force measurements. 

Even if all of these problems are satisfactorily resolved, one might still question whether 
the measured hydrodynamic coefficients and the coupling between different coefficients correctly 
represents the characteristics of a time-dependent vehicle maneuver.  For this reason, recent 
experiments have involved a free-running, radio-controlled model.  While one must still account for 
the effects of bounding walls and free surfaces, operation of this model during a specific maneuver 
can lead to better measurements of hydrodynamic forces.  However, actual modeling of the 
maneuvering characteristics of a vehicle requires dynamic similitude, where the vehicle and the model 
have the same Froude number and Reynolds number, 

V.                                                 V~L 

Fr = —— and Re =   . 

For underwater vehicle maneuvers, the Froude number is often referred to as a modified Froude 
number, since no free-surface effects exist.  The ratio of Re to Fr can be interpreted as the ratio of 
the hydrostatic forces and moments, from the effects of weight and buoyancy, to the hydrodynamic 
forces and moments.   Except at full scale, this dynamic similitude is impossible; and while some full- 
scale submarine data does exist, the costs to acquire such data is extremely high, and the installation 
of proper instrumentation on an actual submarine provides difficult problems.  Radio-controlled model 
tests are run with the full-scale Froude number, while the effects of the Reynolds number are modeled 
using an equivalent flat-plate resistance.   Unfortunately, for the very low Reynolds numbers used in 
radio-controlled model tests, the three-dimensional locations of transition zones and separation lines 
will differ considerably from the full-scale vehicle, and flat-plate correlations will not account for 
these differences.  Strakes and surface roughness (grit) are often added in an ad hoc manner in an 
attempt to force the model-scale trajectory data to better match full-scale trajectory data.  These 
additions to the model will tend to fix transition and separation, but these effects are contrary to what 
occurs naturally during a time-dependent maneuver. 
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1.4 Physics-Based Means of Predicting Vehicle Maneuvers 

The traditional correlation-based means of "predicting" the maneuvering characteristics of 
a submerged vehicle have worked fairly well for vehicles with slender sterns and for simple and some 
moderate maneuvers.  However, for vehicles with full sterns, for nonaxisymmetric hulls, and for any 
vehicle operating under an extreme maneuver, these traditional methods have not proven adequate. 
For new vehicle designs, the determination of a submerged operating envelope (SOE) requires a large 
number of expensive tests in order to obtain correlations for the stability and control derivatives; and 
yet, uncertainties remain because the methodology has major difficulties with extreme maneuvers. 
Small changes in a design require many expensive tests to be run again.  These traditional methods 
are also severely hampered by their inability to model the effects of the propulsor.  Finally, these 
"predictions" treat time-dependent maneuvers in a quasi-steady manner~a series of steady-state 
calculations.  Accurate predictions of the trajectory of a maneuvering vehicle will require unsteady 
calculations. 

Accurate predictions of maneuvering characteristics also require the ability to compute the 
generation of vorticity within the hull and appendage boundary layers; the three-dimensional 
separation of these boundary layers that leads to vortical structures leaving the surface and entering 
the flow field; the correct diffusion of these vortices as they convect downstream; and the interaction 
of these vortices with the hull, the appendages, and the propulsor.  This interaction of a vortex with a 
downstream surface will change the static pressure and shear stress on the surface and can result in 
significant changes in the resulting hydrodynamic forces and moments on the maneuvering vehicle. 
Traditional correlation-based methods cannot directly address these very important issues for a time- 
dependent maneuver. 

As a result of the limitations of the traditional correlation-based means of "predicting" the 
maneuvering characteristics of a submerged vehicle, a team of researchers from the Engineering 
Research Center at Mississippi State University and the Applied Research Laboratory at The 
Pennsylvania State University completed a three-and-a-half-year project to develop a physics-based 
means of accurately predicting the forces and moments acting on a maneuvering, self-propelled, 
appended, underwater vehicle and the resulting vehicle motion.  This report discusses various 
elements within the development of this a priori prediction method. 

The next section of the report describes the numerical approach to solving the Reynolds- 
averaged Navier-Stokes (RANS) equations.  The resulting computer code solves for the unsteady flow 
field around the maneuvering vehicle at each instance of time-including the static pressures and shear 
stresses on each surface and the effects of vortices within the flow field.  The computation of flow 
past a maneuvering vehicle at high Reynolds number is a large-scale simulation requiring large 
amounts of floating-point arithmetic and considerable storage capacity.  Therefore, the report next 
describes the ability to exploit high-performance parallel computing in solving these flows.  Following 
this section, the report discusses the issues concerning turbulence modeling for these unsteady, three- 
dimensional, high Reynolds number flows.  After computing the flow field at each time step, the code 
must integrate the pressure and shear-stress fields on all of the surfaces to obtain the hydrodynamic 
forces and moments acting on the vehicle.  With this information, the report describes how the code 
solves for the new velocity and location of the vehicle using the 6DOF vehicle dynamics equations. 
In the final section describing the prediction method, the report focuses on the treatment of the 
propulsor. 
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After the description of each element within the maneuvering prediction methodology, the 
rest of the report describes the results from applying this method.  These results include two types of 
computations.   First, the code was run for many cases-both simple and complex-where experimental 
data or analytical solutions exist.  Comparisons between the computational and experimental results 
provide verification of various elements of the prediction method and improve confidence in the use 
of the method-at least to the extent practical.  Extensive code validation for a maneuvering vehicle 
was not expected at this time.  Second, the code was run for many cases where experimental data did 
not exist.  These computations were performed to check the feasibility of the method to calculate flow 
fields of varying complexity-leading up to the computation of a maneuvering, self-propelled, 
appended, underwater vehicle.  Finally, the report concludes by summarizing the current state of the 
computational method and its ability to predict maneuvering.  The report also suggests what future 
work is still necessary to accurately predict vehicle maneuvering characteristics. 



2.  Numerical Approach 

To develop a physics-based means of making maneuvering predictions of self-propelled 
underwater vehicles, the research team first needed to solve the unsteady Reynolds-averaged 
Navier-Stokes (RANS) equations in order to compute the necessary three-dimensional, 
time-dependent, incompressible, turbulent flow fields.  The resulting computer code is referred to as 
UNCLE, an acronym for the unsteady computation of field equations.  Because of the magnitude of 
the problem size with regard to resolving fully-configured vehicles that include appendages and a 
rotating propulsor, the numerical solution of the RANS equations is carried out on dynamic, relative- 
motion, multiblock, structured grids.  The Reynolds numbers of these flows are extremely large, and 
the viscous regions must be resolved within the near-wall region of the turbulent boundary layers 
(minimum y+ values near one).  This resolution places severe demands on the numerical solution 
scheme in terms of stability and accuracy.  Moreover, the flow is both three-dimensional and 
unsteady in the sense of the Reynolds-averaged mean flow.  To make the computation of these high 
Reynolds number, unsteady flow problems practical in terms of the total computational (CPU) time 
required, one must restrict the computational time-step needs by the physics of the problem being 
solved and not by the numerics of the scheme used to solve the equations.  This section discusses the 
equations, numerical flux formulation, solution algorithm, and computational grids used to solve the 
equations and achieve the physics-based time restriction. 

2.1 Reynolds-Averaged Navier-Stokes Equations 

The three-dimensional, time-dependent Reynolds-averaged Navier-Stokes equations are first 
transformed to a time-dependent curvilinear coordinate system.  The artificial (or pseudo) 
compressibility idea of Chorin [1967] is then introduced, as done previously by Pan and 
Chakravarthy [1989], Rogers and Kwak [1990], and Taylor [1991].  The use of artificial 
compressibility permits the experience gained in the numerical solution of compressible flow problems 
to be exploited in the numerical solution of incompressible flow problems—as shown, for example, by 
Whitfield [1995].  The artificial compressibility form of the three-dimensional, time-dependent RANS 
equations in general curvilinear coordinates is 
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In these equations, ß is the artificial compressibility coefficient, with a typical value of 5 ~ 10; p is 
the static pressure; u, v, and w are the velocity components in Cartesian coordinates x, y, and z. U, 
V, and Ware the contravariant velocity components in curvilinear coordinate directions £, rj, and f, 

respectively. The terms Tk , Tk , and Tk -where k = £, rj, and f-are the viscous flux components 

in curvilinear coordinates. J is the Jacobian of the inverse transformation and kx, ky, kz, and A;-with 
k = £, -q, and f~are the transformation metric quantities, as described by Taylor [1991], where a 
subscript denotes differentiation. 

In this work, the thin-layer approximation is introduced to simplify the full RANS equations. 
To satisfy closure for turbulent flow computations, the code incorporated turbulence models, as will 
be discussed in a later section.  Gatlin [1987] described the details of treating the viscous terms, while 
Chen [1991] made improvements with regard to the computation of the wall shear stress by using 
better computations of the tangential velocity derivatives normal to a solid surface.  He showed that 
this improvement is simple to implement and works extremely well on grids that may be highly 
skewed. 



2.2 Numerical Flux Vector 

Equation 1 is discretized into a cell-centered finite-volume form which for one-dimensional 
flow, for example, can be written as 
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where the index i corresponds to a cell center and indices i±Vi correspond to cell faces.  In this 
expression, the dependent variable vector Q is considered to be constant throughout the cell, whereas 
the flux F is assumed to be uniform over each surface of the cell.  A flux vector is therefore needed 
at each cell face. 

There are numerous ways of developing this flux vector, and early on in this maneuvering 
program, the formulation presented by Taylor [1991] was used.    He incorporated the flux-difference- 
split scheme of Roe [1981] for the first-order contribution and a hybrid numerical flux vector for the 
higher-order contribution that was patterned after the flux vector developed for compressible flow by 
Whitfield, Janus, and Simpson [1988].  An advantage of this hybrid flux is that the formulation leads 
more or less naturally to the limiting of characteristic variables, which is important for compressible 
flows with discontinuities.  However, perhaps because two of the eigenvalues never change sign in 
this artificial-compressibility formulation, Whitfield and Taylor [1994] showed that limiting the 
characteristic variables for these incompressible flow computations has not been required.  Therefore, 
after some considerable time following the first version of this incompressible code, Whitfield and 
Taylor [1994] began to investigate the sort of results that could be obtained for second- and 
third-order flux vectors by the more classical MUSCL-type of numerical flux-vector formulation 
originally developed by van Leer [1979].  Whitfield and Taylor [1994] found that the nonlimited form 
of the dependent variable extrapolation method of Anderson, Thomas, and van Leer [1986] worked 
well for this incompressible formulation and that the numerical results were extremely close to the 
results provided by the hybrid numerical flux vector.  For the currently used numerical flux, 
Whitfield and Taylor [1994] decided on a formulation based on the approximate Riemann solver of 
Roe [1981], which in the interest of a reduced floating-point-operation count is written for this 
one-dimensional example (Equation 2) in the form: 
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where A is the Roe matrix given by 

A      =   Äj:   A5   Ä5 
-/ (4) 

The eigenvalue diagonal matrix, A5, contains only the nonpositive eigenvalues of A, and the 



similarity matrix, R^, has the right eigenvectors of A as columns.  Whitfield and Taylor [1994] 

showed that the matrix Ä consists of the Roe-averaged variables, and all metric quantities occurring 
in Equation 3 are evaluated at the cell face iH-1/2. 

The numerical scheme is made higher order by using the MUSCL approach of 
van Leer [1979].  Anderson, Thomas, and van Leer [1986] used a MUSCL-type approach in flux- 
vector-split schemes.   Following their approach, the dependent variables just to the right of the cell 
face, ß8, located at i + l/2 and just to the left of the same cell face, & , are written as 

QR
L = Q,„ -%[0- *)&« ~ Qt.i) + (> + *>(2w - Qi)] (5a) 

and 

&L = Q< + -7 i(1 ~ K)& ~ ft-i) + 0 + K;(6,.+/ - ß,.)] . (5b) 
4 

For 4> = 0 in Equations 5a and 5b, the numerical scheme would be first order in space.  For higher- 
order schemes, 0 = 1.  With K = -1, only points to the right of the cell face are used for ß* and 
only points to the left of the cell face are used for ß^-and a second-order upwind scheme results. 
With K = 1/3, two points to the right and one point to the left of the cell face are used for 0s, and 
two points to the left and one point to the right of the cell face are used for (f.  Anderson, Thomas, 
and van Leer [1986] referred to the resulting scheme as a third-order upwind-biased scheme.   Note 
that the third-order upwind-biased scheme depends on information from the same number of points as 
the second-order scheme.  All numerical results presented here were obtained with K = 1/3. 

2.3  Solution Algorithm 

The normal procedure for the solution of Equation 2 would be to linearize the spatial- 
difference terms, move the terms not containing Aß" to the right-hand side of the equations, and solve 
for Aß".  This procedure is particularly true for problems expected to have steady-state solutions, 
because the sum of the spatial-difference operator terms and Aß1 would both go to zero.  However, 
for unsteady flow, the ideal situation would be to find Q>+l such that Equation 2 is satisfied.  That is, 
find ß"+/ such that 

&-(&>+<) = _~i + 6\ FfCr*1) =0 , (6) 
Ax 

as suggested by Whitfield [1990]. 
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One way of attempting to solve this problem is to use Newton's method.  Ortega and 
Rheinboldt [1970] showed that Newton's method for the function J?(x) would be 

(7) 

where m = 1,2, 3, ... zndJ?~'(x)is the Jacobian matrix of the vector ^{x).  In principle, the 
generated sequence g"+/m+; converges to Q,+l and, hence, Equation 6 is satisfied.  For the 
one-dimensional example, 
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In this expression, F is the Jacobian of the numerical flux vector, with the first subscript representing 
the position of the cell face of the numerical flux vector and the second subscript representing the 
position of the dependent variable vector with which the numerical flux vector is differentiated.  /„ is 
an identity matrix, except that the first diagonal element is zero in order to satisfy the true 
incompressible continuity equation. 

A linear system of equations must be solved at each iteration of Newton's method.  For 
three-dimensional problems, Vanden and Whitfield [1995] showed that a direct solution seems to be 
impractical and, in this work, symmetric Gauss-Seidel relaxation is used.  Whitfield and 
Taylor [1991] suggested that the flux Jacobian should be obtained numerically since this technique is 
simple compared to the difficult task of analytically obtaining the flux Jacobian of the flux vector 
based on Roe's formulation in three dimensions.  Ortega and Rheinboldt [1970] referred to this 
solution scheme as discretized Newton-relaxation, while Vanden and Whitfield [1995] abbreviated it 
as the DNR scheme.  Sheng, Taylor, and Whitfield [1995c, 1995a, 1995b] added a multigrid scheme to 
accelerate the convergence of the numerical solutions, extended it for use with the multiblock code, 
and used it for unsteady flow computations. 

2.4 Grid Generation 

While the application of any flow solver requires a well-constructed grid, many of the 
applications in this maneuvering program required the use of the multigrid UNCLE code on dynamic, 
relative-motion, multiblock, structured grids.  The multiblock topology allows one to divide the 
domain into smaller regions for detailed gridding which, in turn, allows for a better quality grid— 
especially for complex geometry.  Just as important, multiblock topology allows one to obtain a 
numerical solution using much less memory than would be required for a single-block topology.  The 
current working grid-generation package has no difficulty in subdividing the grid into blocks.  For the 
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UNCLE code, the grid within each block requires point-to-point continuity across block interfaces. 
Users of the UNCLE code need to compromise between the number of blocks and the size of each 
block.  Most of the applications of the multigrid version of the UNCLE code used grids constructed 
to have at least three levels of multigrid.  Because of this constraint, at least nine grid points had to 
be added or deleted to existing grid blocks in order for the number of points in each block to conform 
to the use of multigrid.  While multigrid is certainly very efficient for the computations, one must be 
careful with the placement of points since the requirement for multigrid affects the overall grid 
arrangement and the number of grid points. 

This maneuvering program has included test cases with several different geometries, including 
various vehicle configurations.  The mixture of C-type grids and H-type grids were used in the 
domain, where C-grids were applied to the region around the front section of a vehicle hull, and 
H-grids were applied to the remaining regions.  A few cases also include O-type grids.  As shown 
later, the most complex grid included a submarine-type vehicle that included a hull, a sail with sail 
planes, four stern appendages, and a five-bladed propeller.  This grid was constructed with 51 blocks 
and the total number of grid points was 1,642,659.  A buffer zone between the stern appendages and 
the propeller was created to ensure the matching between the rotating section-which included the 
propeller and regions downstream~and the fixed section-which included the regions upstream of the 
propeller. 

Most of the grids in the program were generated using the software package EAGLEView, a 
package discussed in detail by Soni, Thompson, Stokes, and Shih [1992] and Remotigue, Hart, and 
Stokes [1992].  EAGLEView is an interactive surface and grid-generation software package developed 
to reduce the amount of time spent on the surface definition and the grid refinement for computational 
field simulation problems.  The user can define his geometry, construct the volume grid, visualize the 
results, and make changes without having to execute a different program.   Geometries are constructed 
in EAGLEView in a fashion: Points are used to create curves, which are used to create surfaces, 
which are used to create volumetric grids.   Embedded in EAGLEView is a point-and-click interface 
in which every point, vector, axis, curve, surface, or grid may be accessed and/or queried using a 
mouse.   A streamlined version of the previously-developed EAGLE grid-generation code, 
easy EAGLE, has been developed to handle the smoothness of the grids from EAGLEView.  During 
later stages of the maneuvering program, some grids were generated using the new software package 
GUM_B.  GUM_B is an acronym for the General Unstructured Multi-Block Structured Grid 
Generator, and it was used primarily to generate grids for the test case involving the high Reynolds 
number pump (HIREP).  The quality of the resulting grid looked very promising for such a difficult 
geometry. 
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3.  Parallel Computing Methodology 

Future use of UNCLE for large-scale simulations of a maneuvering vehicle at high 
Reynolds number will require large amounts of floating-point arithmetic and considerable storage 
capacity.  This section describes a version of UNCLE that encompasses a methodology for solving 
these flows using high-performance parallel computing.  This code is written in FORTRAN-77 and 
uses the Message Passing Interface (MPI) for interprocessor communications on distributed-memory 
parallel computing systems.  MPI provides portability across a wide range of multiprocessor 
computers.  In this parallel code, the linearized implicit solution algorithm is modified to run in 
parallel by using a block-decoupled subiterative strategy.  A heuristic performance estimate is used 
for guiding the parallel problem definition. 

3.1 Parallel Algorithm 

The symmetric Gauss-Seidel (SGS) subiterations in the sequential algorithm are associated 
with good stability, convergence properties, and efficiency~but they are not easily parallelized.  The 
approach followed in the parallel code is to implement this algorithm on spatially decomposed grid 
blocks assigned to separate processes in a context such that the subiterations are effectively decoupled, 
so that each block can be done in parallel.  This decoupling tends to give good parallel performance, 
but the decoupling of subiterations in blocks can degrade the performance of this otherwise implicit 
algorithm. 

In designing this parallel algorithm, an effort was made to identify a procedure that keeps 
the total number of arithmetic operations required for a converged solution as close as possible to that 
for the sequential algorithm, and then to achieve good parallel efficiency through high concurrency 
and minimal communications overhead.  This strategy requires that the parallel algorithm has 
stability and convergence properties close to that of the sequential algorithm.  It is demonstrated here 
that the convergence rate of the sequential algorithm can be recovered at reasonable cost in the 
parallel algorithm by using a sufficient number of (inexpensive) subiterations. 

The parallel implementation employs an overlapping spatial domain decomposition of the 
grid into blocks which are assigned to separate processes and, then, distributed across multiple 
processors.  During each SGS subiteration, the solution increments are exchanged for two rows (or 
surfaces) of points adjacent to each block interface.  The decoupling is accomplished by starting each 
sweep of the subiteration within each block using boundary conditions from the previous subiteration 
sweep instead of waiting for values from the current subiteration.    This algorithm uses Gauss-Seidel 
relaxation sweeps within each process but is effectively explicit across block boundaries, allowing for 
a parallel solution for all blocks.  The solution increments are updated by message passing following 
completion of the forward sweep of the subiteration and, then, again following the backward sweep. 
In addition, an algebraic eddy viscosity turbulence model is used which requires global line searches 
that traverse block boundaries.  As discussed in the next section, the turbulence model is a modified 
version of the one proposed by Baldwin and Lomax [1978].  The turbulence model is updated before 
each time step.  Key elements of the parallel solution methodology are summarized here; 
Pankajakshan and Briley [1995] provide further details. 
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3.2 Parallel Algorithmic Performance 

Numerical experiments were conducted to study the impact of some of the key algorithmic 
parameters on efficiency in solving for the flow over underwater vehicles.  The initial test case was 
an axisymmetric submarine-type hull configuration known as SUBOFF--a test case that will be 
examined further in the results sections of this report.  A 131x51x2 (13,362 point) grid was used, and 
this grid is highly stretched to resolve the very thin shear layer occurring at the high Reynolds 
number (12,000,000 based on hull length) for this case.  For this grid, the ratio of maximum to 
minimum mesh spacing is 1,600,000 for the radial direction and 90 for the circumferential direction. 
The maximum cell aspect ratio is 12,778.  The most important algorithm parameters are the 
nondimensional time step (or CFL number, defined by Briley, Neerarambam, and Whitfield [1995]) 
and the number of subiterations (Is).  The frequency of updating flux Jacobian linearizations was 
found to have only a weak influence on stability and iterative convergence rate.  The number of 
iterations required to reduce the maximum residual by a factor of 0.001 are plotted in Figure 1 as a 
function of CFL and Is. The results in Figure 1 are re-plotted in Figure 2 to convert the number of 
iterations to arithmetic complexity (defined later using the CPU requirements from the performance 
estimate for this solution algorithm).  Note that the minimum arithmetic complexity occurs for Is of 3 
to 5 and CFL of about 40 to 50, indicating that further subiteration is less efficient in CPU time even 
though fewer time step iterations are required.  The optimal CFL number is expected to vary 
somewhat for other flow problems. 

Figure 3 gives results which suggest guidelines for selecting the number of subiterations 
for the decoupled parallel algorithm to maintain the convergence rate of the sequential algorithm.  In 
a series of cases with different numbers of processors and subiterations and with one- and 
two-dimensional decompositions, it appears that the sequential convergence rate is maintained- 
provided there is one subiteration for every two grid blocks in the direction of the longest block 
decomposition.  This result implies that a balanced higher-dimensional decomposition will show the 
least amount of algorithmic degradation.  It is significant that the additional subiterations required are 
inexpensive for this algorithm because flux Jacobians are saved and reused. 

3.3 Problem Definition and Parallel Efficiency 

Another objective of this study is to identify a spatial domain decomposition that leads to 
good parallel efficiency on the available computing platform. To accomplish this decomposition, one 
can choose a minimum number of processors having sufficient global memory for the case to be run, 
arrange for a grid block structure with small a surface-to-volume ratio (ratio of the number of surface 
grid points to the number of volume grid points) to reduce communication, and use equal block sizes 
for load balance on homogeneous processors. 

Figure 4 illustrates this procedure for making flow simulations on parallel processors. 
Once the computational problem to be solved is defined, the problem size determines the global 
memory required, and this memory determines the minimum number of processors required on the 
available computing platform.  The run time is then estimated using a heuristic performance estimate 
(defined later) based on both solution algorithm and architectural parameters. 
Communication/computation ratios are reduced by keeping the granularity as coarse as available 
memory allows (to give a large volume of data for the CPU) and by choosing a decomposition with 
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small surface-to-volume ratio to reduce the size of messages.  If the estimated run time is too large, it 
can be reduced by changing the number of processors, P, with guidance from the performance 
estimate.  The final step is to generate a grid having P blocks. 

In effect, the parallel decomposition and load balancing issues are introduced as constraints 
in the grid generation process.  These constraints are easily dealt with by experienced grid generators 
with good grid generation programs and, at some point, the constrained grid generation may be 
automated.  If an existing grid must be used, it can often be reblocked according to these guidelines. 
This constrained grid generation process yields a multi-block grid with blocks sized appropriately for 
the flow solver and computer configuration.  A uniform grid block size provides static load balancing. 
The approach is well suited for problems that can be addressed by multi-block dynamic grids 
generated at the start of the flow calculation. 

3.4 Parallel Performance Estimate 

A heuristic means of estimating the parallel performance, given key parameters for the 
solution algorithm and parallel computing platform, is outlined next. 

3.4.1  Storage and CPU Requirements 

Assuming an «£ x n, x n( grid with N finite-volume cells, the storage required for large 
arrays is approximately 248 N 64-bit words.  Thus, a 50,000-point grid needs 109 Mb. 

The floating point operations required by the solution algorithm during one step include 
three basic components of the calculation: (a) residual evaluation, (b) LU subiteration sweeps, and 
(c) numerical flux Jacobian linearizations.  These components were determined by a sequence of 
calibration runs on a Cray YMP and are summarized here in Mflops (million floating point 
operations) as (a) residual: 0.001230 N Mflops, (b) subiteration: 0.0003305 N Mflops, and 
(c) Jacobian: 0.0052843 N Mflops.  If /s denotes the number of LU subiterations, if the flux Jacobian 
linearizations are updated every l3 time steps, and if i?CPU is the effective processor speed in Mflops, 
then the total CPU time in seconds for an average step is given by 

CPU   (seconds) = 

Residual + /<,>< Subiteration +   

"CPU 

3.4.2 Communication Requirements 

Three basic components of the interprocessor communication requirement are considered: 
(a) exchange of data adjacent to block interfaces during subiteration, (b) global operations required by 
the algebraic eddy viscosity turbulence model, and (c) loading and unloading of buffer arrays used in 
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message passing (a slightly different MPI implementation with user-defined datatypes would avoid this 
explicit buffer loading, but has not yet been implemented). 

The communications estimate is expressed in terms of the following parameters: number of 
processors, P ; number of block interfaces exchanging messages, Nm; message length for a single data 
surface (Mb), Lm; MPI software latency (seconds), a, and; MPI software bandwidth (Mb/s), ß. 
During each of the /x subiterations, the solution time increment of Aß must be exchanged twice 
(once for the forward sweep and once for the backward sweep) for each of the Nm block interfaces on 
each process.  The overlapping domain decomposition is such that data is duplicated and exchanged 
for two surfaces of points adjacent to each block interface.  In addition, the block decoupled solution 
algorithm is synchronized such that all messages are sent at approximately the same time. 
Consequently, an estimate for bisection width is needed to account for self contention in message 

passing.  A factor of >/P is a suitable estimate and is exact for a two-dimensional mesh.  The 
estimated total time required for message passing is given by 

2hK 
2L_ 

a + 
) ( 

fp 
) 

+ 2 
\ 

2L_ 
a + fP + 2IsNm 

2J± 
9.71 

\ 

Point-to-Point Global Bufferng 

where q is such that P >2q~'. 

For the architectural parameters, the effective processor speed RCPU was calibrated for an 
IBM SP-2 processor as approximately 49 Mflops, while the MPI software latency and bandwidth were 
obtained from Saphir and Fineberg [1995] for an IBM SP-2 as a = 62 jts and ß = 34 Mb/s (the 
asymptotic rate for large messages). 

Figure 5 compares the parallel performance estimates with actual run times for these one-, 
four-, and eight-processor cases on an IBM SP-2 and, in general, the run-time estimates are in 
reasonable agreement with the actual trend.  The reason for dividing the shorter direction (having 51 
points) is that this direction cuts across the turbulent boundary layer.  This demonstrates the ability of 
this particular algorithm to handle arbitrary domain decompositions. 

In Figures 6 and 7, estimated and actual/calibrated run times are compared for two larger 
cases of flow past the SUBOFF hull with a sail and stern appendages, having grids with 12 blocks of 
49x41x25 points (that is, 602,700 total grid points) and with 32 blocks of 49x65x33 points (that is, 
3,363,360 total grid points), and having two-dimensional decompositions.   Estimated times are given 
for both one- and two-dimensional decompositions. 

3.5 Parallel Implementation 

The grid in PLOT3D multiblock format is split into multiple files for parallel I/O if the 
MPI implementation permits it.  The boundary conditions are specified by means of an input file. 
The block-to-block interfaces are also specified using a map which is generally automatically 
generated from the grid.  Each block is tagged using an ordered triplet that defines a Cartesian grid. 
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The boundary conditions are applied using a library of subroutines with a uniform calling 
interface.  New boundary conditions can be added by modifying a standard template.  The 
block-to-block map is used to set up communications among neighboring blocks.  Non-blocking MPI 
send and receive operations, with globally defined tags, are used for all messages. 

Communication contexts are defined along the principal axes in the computational space 
using the Cartesian processor grid.  The algebraic turbulence model uses MPI collective operations 
within these contexts to calculate the eddy viscosity.  Pankajakshan and Briley [1995] provide further 
implementation details. 

3.6 Parallel Solution for Configurations with a Rotating Propulsor 

The parallel code for configurations with propulsors differs from the parallel 
implementation just described in that it has additional routines for handling grid interfaces associated 
with the rotating propulsor.  The grid rotation and distortion routines are also modified to work in 
parallel using data replication and updating to handle access to non-local data.  Algorithm and grid 
details associated with a rotating propulsor can be found in a later section of this report. 

A unique feature of the propulsor version of the code is that each grid block having a 
rotating interface requires access to data from a set of blocks which varies over time as the propulsor 
rotates.  Both the number and identity of elements in this interface set depend on the time step.  As 
noted previously, the parallel code runs in a loosely-coupled mode-with each domain exchanging 
information after each forward and backward sweep of the symmetric Gauss-Seidel iteration.  In the 
propulsor version of the parallel code, the same treatment is applied to the rotating interfaces.  The 
parallel propulsor code uses a modified version of the ring-buffer concept developed by Janus [1989] 
to handle the time-variable dataset associated with the rotating interface. 

In the ring-buffer concept, each process independently calculates the grid rotation and grid 
distortion within its own domain.  The ring-buffer data is replicated across all processes which have a 
rotating interface.  Each process writes data into its copy of the buffer.  The buffer data is then 
consolidated across all the processes by an MPI global all-reduce operation.  These processes then use 
appropriate offsets to locate and read the data they need.  This implies that the static and dynamic 
faces of the interface need to have the same number of grid points, but each can be subdivided into 
unequal sub-blocks. 
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4.  Turbulence Modeling 

The ensemble or Reynolds averaging of the Navier-Stokes equations yields stress-like 
terms, and the solution of the resulting Reynolds-averaged Navier-Stokes equations requires modeling 
of these apparent or "Reynolds" stresses.  For computing the flow past a maneuvering vehicle, 
prediction of the location of the forebody vortex lift-off will be important in determining the vehicle 
dynamics and, for at least that reason, a good turbulence model is essential.  Also, because the vortex 
lift-off will be a function of the near-wall flow-and because no simple analytic expression can 
accurately or generally describe three-dimensional near-wall flow-the chosen turbulence model must 
be capable of predicting the near-wall, or low-Reynolds-number, region.  In addition to the three- 
dimensional separation that leads to vortex lift-off, large separation regions will accompany the large 
control surface angles that occur during extreme maneuvers, and computing these separation regions 
will challenge the turbulence model.  Finally, these turbulent flows will contain length scales and time 
scales which might vary dramatically from one situation to another.  For this reason, two-equation 
models represent the minimum acceptable level of generalized closure since the need to empirically 
specify either the length scale or the time scale is removed. 

This section will first describe the algebraic turbulence model that was developed for use 
with the baseline UNCLE code.  In parallel to the development of this baseline code, work proceeded 
on two-equation turbulence models, initially with a stand-alone model that could be tested without 
interfering with the code development work on the numerical algorithm.   Later, a two-equation 
turbulence model was installed as a module within the UNCLE code. 

4.1  Algebraic Turbulence Model 

The initial turbulence model used within the UNCLE code is based on the algebraic or 
zero-equation model of Baldwin and Lomax [1978]. Taylor [1991] and Chen [1991] modified this 
algebraic model for their applications with three-dimensional, turbulent, separated flows.  An 
attractive feature of the Baldwin-Lomax model is that it avoids the necessity of finding the edge of the 
boundary layer.  Taylor [1991] used the modified model for incompressible flows, while Chen [1991] 
used the model for compressible flows, including the calculation of the wall stress for non-orthogonal 
grids~a technique that has carried over to this maneuvering program. 

In this method, the turbulence is modeled through the use of a turbulent or "eddy" 
viscosity coefficient, /xr.  As a result, in the expressions for the stress tensors in the RANS equations, 
the molecular coefficient of viscosity, n, is replaced by /J. + nT.  A two-region model is used for 
computing nT.  The inner region is the region closest to the wall, where the flow equations are 
expected to match fundamental, universal behaviors.  Here, the distribution of eddy viscosity follows 
the Prandtl-van Driest distribution described by Warsi [1993].  In both the inner and outer 
formulations, the distribution of vorticity is used to determine the length scales, avoiding the necessity 
to determine the outer edge of the boundary layer.   For the inner region, 

(MT)inner - i2 M . 
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where 

/ = K v [1 -y ','26 

and 

♦   yfiTv 
y  = —  

V 

y is the normal distance from the wall, |u| is the absolute magnitude of vorticity, TW is the shear 
stress at the surface (wall) of the body, and K = 0.41 is the von Karman constant.  The outer region 
is the region far from the wall, where universal near-wall behaviors break down completely.  The 
eddy viscosity for the outer region is given by 

(PTI T'outer K Ccp Fwake FKleb(y) 

where 

Kake = minimum smax      max *       wk   * max 

(um)2 

The quantities yma and F^ are determined from the function 

F(y) = y M (/ - e'r'26 

where Fma is the maximum value of F(y) and y^ is the value of y at which F^. occurs.  The function 
FKkb(y) is the Klebanoff intermittency factor determined from 

FaJy) 

( 
1 + 5.5 

C Kleb 

\ Smax j 

The quantity Udiff is the difference between the maximum and minimum values of total velocity in the 
profile and, for boundary layers, this minimum is defined as zero. The following constants are used 
in the above equations: 

cp 1.6 ,     C Kleb 0.3 C wk 1.0 , and    K = 0.0168 
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Multiple peaks in the F^ function typically occur in flows at incidence due to the presence 
of leeward vortical structures.  Degani and Schiff [1986] proposed a method to choose the first peak, 
which corresponds to the attached boundary layer.  However, their methodology requires a knowledge 
of the location of the windward side of the geometry, a restriction which would greatly increase the 
coding complexity for the general case of a maneuvering vehicle.  A much simpler approach was 
taken in this work in that multiple peaks in the F^ function were avoided by stopping the search 
when the first maximum was found.  Another modification to the turbulence model was made for 
flows at incidence to account for the thick stern boundary layer.  Sung, Griffin, Tsai, 
Huang [1993,1995] have developed a procedure to prevent the eddy viscosity from being 
overpredicted in this region.  The expression for the outer eddy viscosity is altered to account for the 
experimental observation that the characteristic length scale in the stern boundary layer "is more 
closely related to the length scale of the annulus between the body surface and the edge of the 
boundary layer than the distance between the two."  In this work, rather than modify the outer eddy 
viscosity formulation, the search for F^ was further restricted by a specified constant (or search 
parameter). 

In all the results presented here, the turbulent eddy viscosity was calculated independently 
in each coordinate direction.  For example, for the hull configuration with stern appendages, the eddy 
viscosity coefficient is calculated along the computational direction going away from the hull surface, 
i), and along the computational direction going away from the stern appendages, f.  Since 17-lines run 
perpendicular to the hull, only the hull surface is considered when the eddy viscosity is calculated for 
stresses which rely on ^-derivatives.  On the other hand, eddy viscosities for stresses which rely on f- 
derivatives are a function of only the appendage surfaces, since f-lines run perpendicular to the 
appendage.  No modifications to these computed values were made in the vicinity of the 
hull-appendage junctions. 

In wakes, the mixing-length formulation is modified in a manner suggested by Mehta, 
Chang, and Cebeci [1985] so that the turbulence mixing length depends upon the distance from the 
trailing edge instead of the distance from the wake cut of the grid.  This modified damping length is 
given by 

l = Ky[l -y * xine 

where 

X = (x - xTE) 

4.2 Two-Equation Turbulence Models 

During this research, two different two-equation models were implemented in conjunction 
with the UNCLE flow solver—the k-e model of Launder and Sharma [1974] and the q-u model of 
Coakley [1983].   Both models and their implementation are described here. 

20 



4.2.1 Low-Reynolds-Number k-e Model 

Initial investigations into two-equation turbulence modeling used the low-Reynolds-number 
k-e model of Launder and Sharma [1974]-that is, a k-e model which can be used to integrate through 
the "low-Reynolds-number," or near-wall, region.  The model was chosen because of its long history 
of success and wide-spread use in the engineering community, and because Briley and 
McDonald [1977] had previously coded a stand-alone module. 

Here, the effects of turbulence on momentum are represented by adding the laminar 
viscosity to an eddy viscosity defined by 

k2 

where k, the turbulent kinetic energy, and e, the turbulent energy dissipation rate, are supplied by two 
transport equations. 

The modeled forms of the transport equations for k and e have been covered extensively 
elsewhere.  Here, it suffices to show their form.  The turbulent kinetic energy equation is 

Dk = J_ 
Dt      dx, 

H + — 
dk_  au, 

-pUjUj —-Pe-D 

and the equation for the transport of the dissipation rate is 

De _   d 
' Dt      dx.. 

\ 

£ 7 

de_ 
dx, 

du, —-c 
dx    eik P"/M7  —Ce/T   "  CüP~ E . 

The terms D and E arise in the low-Reynolds-number modifications.  For the Launder and Sharma 
[1974] model, 

D = 2 ft 
dk'/2dk1/2 

dx.    dx. 

which represents the value of the dissipation rate at the wall, allowing the boundary condition on e to 
be zero.  The term denoted by E, on the other hand, is an ad hoc term needed to attain the correct 
peak of k in the logarithmic region.  It takes the form 

2ßipT d2Ut   d
2Ut 

p     dxdxk dxdxk 

These general tensor forms for D and E were given by Launder and Li [1992].  As shown, they 
strictly obey the Einstein summation convention and should leave no room for confusion. 
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Five empirical constants-and damping functions to model low-Reynolds-number effects- 
are needed to complete the model.  For the constants, the values 

ak = 1.0 t     oe = 1.3 ,     C^ = 0.09 ,     Cel = 1.44 ,     and    Ce2 = 1.92 

are used as specified by Launder and Sharma [1974].  The damping functions 

fM = exp[ -3.4 / (1 + RT / 50)2 ] 

and 

f2 = 1 - 0.3exp(-R?) 

multiply the constants C^ and Ce2, respectively. Their dependence on the turbulent Reynolds number, 
defined by RT = pk2 / pe, alleviates the need to calculate a normal distance to the wall. 

Initially, the stand-alone k-e model was coupled externally to the UNCLE flow solver.  At 
each iteration, the flow solver would write the grid and velocity field to a file.  A separate code 
would convert this output file to a restart file for the turbulence equation solver and, then, the 
turbulence equation code would take the restart file as input to the two-equation model.  The stand- 
alone code would update the turbulence parameters, calculate the eddy viscosity, and pass the eddy 
viscosity back to the flow solver.  Even though it was rather cumbersome, this system allowed work 
on the turbulence model to progress independently of modifications being made to the flow solver. 
Based on experience with this system, work was then begun to implement a two-equation turbulence 
model directly into the UNCLE code. 

4.2.2 Low-Reynolds-Number q-w Model 

At the Applied Research Laboratory of The Pennslyvania State University, Knight and 
Zajaczkowski [1995] had previously installed a two-equation turbulence model into a code with a 
similar algorithm as used in the UNCLE code.  They had successfully demonstrated the use of this 
model for incompressible flows over representative axisymmetric bodies.  In this case, the turbulence 
transport equations governed the velocity scale, q = km, and the inverse time scale of decay, 
w = e /k.  Clearly, the q-u model is largely determined by a straight-forward change of variables 
from the k-e model.  As will be seen, the transport equations share a nearly identical form so that, 
once one set is coded, interchanging between the two is trivial.  Therefore, the q-w model was 
selected for initial installation into the UNCLE code. 

Transport equations are needed for the two variables.  The equation for q can be derived 
by an exact change of variables in the equation for the turbulent kinetic energy, k.  The resulting 
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equation can be written as 

Dq 
P— Dt dx 

J\S 

dq 

i I dx.. 
pq ' c /*    N 

O) 
(9) 

where p is the density, ix is the laminar viscosity and, \iT is the turbulent viscosity.  The strain-rate 
invariant, $, is defined as 

$ = 
\ dU:   dUf 

—:+—I 
dx,-    dxj j 

dU; 

dx 
J 

using the solution for the mean flow from the previous time step. Also, the damping function, D, is 
specified as 

fM = 1 - exp(-apqy//i) (10) 

The normal distance to the wall is represented by y, while a, C^, and aq are empirical constants. 

The equation for a? is also derived by a change of variables from the k and e equations, 
with some simplification of terms arising from diffusion.  The result in this case is 

D(x> = _d_ 

Dt       dxj 
fi + — 

00) + pCffl - C2aK, (11) 

where C,, C2, and au are empirical constants. 

Continuing with the change of variables, the eddy viscosity, as determined by q and CJ, is 

»T  =   PCJ> — (12) 
0) 

Finally, the empirical constants are given as 

a = 0.020 ,   C, = 0.055+ 0.500/^ ,   C2 = 0.833 ,   C^ = 0.09 ,   and    0^ = 0^ = 2.0 .   (13) 

Note that while the damping function,/^, is still needed to model the near-wall effects, the 
additional low-Reynolds-number source terms (denoted as /„ and E in the formulation of the k-e 
model) have vanished or been removed.  Also, while the damping function in Equation 10 now relies 
on a normal distance to the wall, Coakley [1983] provided an alternative form, 

fß = / - exp[-apq2/(u>fi)J = 1 - exp(aRT) , 
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n/7 
where  RT = SU— t that is available if needed. 

U>fJ 

4.2.3 Adaptation of the q-w Model to the UNCLE Flow Solver 

The turbulence model represented by Equations 9 through 13 is a closed system once the 
velocity field has been specified.  Thus, it can be solved separately from the momentum equations, 
but using an identical method.  In this case, the method is that which has been developed for the 
UNCLE flow solver, and both the method and the notation are copied here.  Toward that end, the 
governing Equations 9 and 11 can be written as 

3Q + dF + «jtT-GJ + d(H-Hv) 

dt       dE, dr\ dC 
S , (14) 

where 

Q = J(q CO/ 

and F, G, Gv, H, and Hv are the viscous and inviscid fluxes as defined for the momentum equations, 
but with q and w as the transported variables.  For instance, 

G = J 
qV 

represents the inviscid flux in the y-direction where Vis the transporting contravariant velocity. 
Similarly, the viscous fluxes take the form 

GV=J 

\ 
v + - 

v + - 

5 d        d , 
^äT^V1 q 

<* / 

a    d    d 
to 

where v and vT are the laminar and turbulent kinematic viscosities.  A thin-layer approximation is 
applied to the turbulent viscous fluxes in the same way that it was applied to the viscous fluxes of the 
momentum equations. 

Relative to the momentum equations, the source term on the right-hand side of 
Equation 14 is new.  For the q-w model, it takes the form 

S = J 
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4.2.4 Solution of the Turbulence Equations 

Once the system of turbulence equations has been cast in the form of the momentum 
equations, it is convenient to apply the same method of solution used for the momentum equations. 
For demonstration purposes, Equation 14 is simplified to the form 

dz     di 

Next, an implicit, central-difference scheme is implemented such that 

AT        ' 

where &~ simply denotes a function, n denotes a time step, and <5, is the central-difference operator. 
The form of Equation 15 lends itself to solution by Newton's method, wherein 

^rVßn+/'m;Aön+/,m = -^rcen+/'m; ; 

5F1 denotes the Jacobian of &~ with respect to Q, and m denotes a Newton iteration.  In this case, the 
resulting system of equations can be written as 

_pn*l.m    . I    1 -ln*l.m ~l n+l.m        .„♦/,»).. 
* i-i/2.i-AQi-i       Ax"        '•♦'*«■ i-m '■'       Aß' 

öI+I'-C; —/ n+l.m    .  _ 
** i+l/2.i+I^"i*l 

^Zn*l,m S?n+l,m        rfi+l.m + t,^,„    - r.,n    - Si 
Ax 1*1/2 "-1-1/2 "« 

where / is the identity matrix.  From this system of equations, one can see that the Jacobian of the 
source term with respect to Q is needed on the left-hand side of the matrix system.  The source term 
itself constitutes a part of the residual calculation on the right-hand side of the matrix system. 

The flux Jacobians are computed numerically in keeping with the formulation of the 
momentum equations; however, the Jacobian of the source term has been computed analytically since 
it is trivial to do so.  Each Newton iteration is solved iteratively using a symmetric Gauss-Seidel 
solver. 

This formulation of the q-w model was added to the UNCLE flow solver and was used 
successfully in a number of test cases.   Currently, the CPU time for the two-equation solver is 
approximately 30% of the time needed to solve the momentum equations alone.  That cost is expected 
to go down once more attention is directed toward improving efficiency. 
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4.3 Nonlinear Modeling of Anisotropy 

Two-equation turbulence models have become a popular choice for use in modern 
engineering applications of computational fluid dynamics.  They represent a more general model than 
the rather limiting algebraic or mixing-length models and are much simpler and less computationally 
expensive than full Reynolds stress models (that is, models that solve each component of the Reynolds 
stress tensor separately).  One drawback, however, is the assumption of an isotropic eddy viscosity, 
which causes the normal Reynolds stresses in most cases to be roughly but erroneously equal. 
Chen [1995] showed that the absence of these normal Reynolds stress differences is detrimental in 
predicting the formation and evolution of primary and secondary horseshoe vortices shed from 
appendage-hull intersections, an important aspect of the current study. 

Early on, Rivlin [1957] had noted the potential importance of normal Reynolds stress 
differences.  Rivlin [1957] compared turbulent flows with non-Newtonian, visco-elastic flows in a 
non-circular straight duct where both were characterized by secondary velocities in a plane normal to 
the primary flow direction.  Noting that the secondary flow in the non-Newtonian fluid was generated 
by differences in normal stress, Rivlin [1957] suggested that differences in the normal Reynolds 
stresses might explain the secondary motion in turbulent flow.  Several years later, Gessner and 
Jones [1965] showed experimentally that this was indeed the case.  Building on this work, 
researchers such as Lumley [1970] suggested that a nonlinear constitutive relation for the Reynolds 
stresses, comparable to that used for non-Newtonian fluids, might be appropriate.  These suggestions 
gave rise to two schools of nonlinear turbulence modeling in which researchers hoped to capture 
anisotropic effects with a nonlinear, or "anisotropic," eddy viscosity without resorting to the solution 
of six second-order, nonlinear, partial differential closure equations. 

The first class of models, the "algebraic Reynolds stress models," such as that developed 
by Rodi [1976], are typically derived from the Reynolds stress equations by relating the transport of 
the Reynolds stress to the transport of the turbulent kinetic energy.  The result is an implicit, 
nonlinear, algebraic relation for the Reynolds stresses which is also a function of k and e.  The model 
gives improved results for the square duct problem, where turbulence-driven secondary flow is 
induced, but Speziale [1994] noted that the model "can give rise to divergent solutions when applied 
to non-equilibrium turbulent flows." 

A second school, which developed a decade later partially in response to these problems, 
has been termed the "nonlinear k-e models."  These models, though they have been derived in 
different ways by different investigators, all assume that the relationship between the Reynolds stress 
and the mean strain rate tensor is not linear but includes terms which are quadratic in the mean strain 
rate tensor as well.  This idea is not new, but instead has been applied before in visco-elastic fluid 
dynamics and rarefied gas dynamics modeling. 

Nonlinear k-e models, such as those proposed by Yoshizawa [1984] and Speziale [1987], 
have become an attractive option to users of the k-e model.  Reasons for their popularity may be the 
ease with which they can be implemented into an existing k-e code and their inherent lack of 
assumptions concerning flow conditions or geometry.  Additionally, Gatski and Speziale [1993] 
showed that these models represent a limiting form of the exact explicit solution of the implicit 
algebraic Reynolds stress models, such as the model developed by Rodi [1976].   Thus, they can be 
derived either by series expansion arguments or directly from the full Reynolds stress equations. 
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4.3.1 The Nonlinear k-e Models 

All of the nonlinear k-e models bear a striking similarity which allows them to be 
represented in large part by a single set of equations.  To begin, each model is intended for use with 
the RANS equations, 

DU,       d 

Dt        dx, ■^\Xif-Puiuj 
(16) 

where -pu,w. represents the Reynolds stress tensor.  Each model proposes that the Reynolds stress be 
modeled as 
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is the mean strain rate tensor.  Summation is performed over jS, resulting in constants C,, C2, and C, 
and three forms of Sßij: 
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The conventional linear k-e model is obtained when Cß and F^ are zero. 

The major differences in the models can be confined to the trailing term, F^.  Referring to 
Table 1, the models of Yoshizawa [1984] and Speziale [1987] both include a material derivative of 
the mean strain rate tensor.  The derivation by Yoshizawa [1984] included a material derivative and a 
third-order second-derivative term, but they were never recommended for use.   The material 
derivative in the Speziale [1987] model, on the other hand, arises from an Oldroyd derivative of the 
mean strain rate tensor and was felt to be significant in his calculation of the flow over a backward 
facing step.  The model developed by Myong and Kasagi [1990] includes a term for modeling the 
near-wall effects in a two-dimensional channel.  For that term, m and n represent the streamwise and 
normal directions in the two-dimensional channel, and no summation is performed over them.   As a 
result, the term is not frame-invariant and is not generally applicable.  Finally, the second model by 
Yoshizawa [1986] includes a term to model thermal buoyancy effects.  That term was used by Sada 
and Ichikawa [1993] where they obtained good results for the flow over a heated flat plate, but it 
seems to be frequently overlooked by other researchers. 

The constants in Equation 17 are empirical.   They are listed in Table 1 but have been 
modified to suit the form in which they are used here.  Speziale [1987], for example, had only one 
empirical constant in his original work which he arrived at experimentally, and all four constants 
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which appear in Table 1 are factors of it.  The constants of Nisizima and Yoshizawa [1987] and 
Myong and Kasagi [1990] were arrived at through computer optimization. 

Table 1.  A Comparison of Nonlinear k-e Models 

Model c, C2 c3 Fy 

Yoshizawa [1984] 2.37 -0.393 1.98 
DE..           ur d2E. 

5.14     tf+7.43    T       ,J 

Dt              p dxkdxk 

Speziale [1987] 3.36 2.24 -1.12 
DE.. 

4.48      y 

Dt 

Nisizima and Yoshizawa [1987] 5.76 ? -1.23 0 

Yoshizawa [1986] 5.76 -16.5 -1.23 -2.47Y 
8T + 8T 2 dT. 

gidx.+gjdx.    3Skdx.  iJ 
\          J              1                   k 1 

Nisizima [1989] 4.69 -27.2 -.551 0 

Rubinstein and Barton [1990] 2.80 17.1 -1.15 0 

Myong and Kasagi [1990] 5.93 3.33 -1.11 4.94JL/6 +6 6  -46 6   ) 
„   \   ij       i" J"          ™ jmj 
r1/ dx„ 

2 

Sada and Ichikawa [1993] 4.69 -27.2 -.551 2.47^( x  dT   .   dT   2.   örÄ ' 
0.,— + o.,— - —0,,—0.. 13 3x.    l3dXj    3 "dx.  " 

J                       l                              K        / 

Excluding the constants for the first model by Yoshizawa [1984], which were not really 
advocated for use, it can be seen that agreement among the various investigators for C, and C, is 
fairly good.  This may be attributed to the fact that Yoshizawa [1986], Speziale [1987], and Myong 
and Kasagi [1990] calibrated their models, either experimentally or computationally, with two- 
dimensional channel flows in which C2 does not appear.  The agreement on C, is very poor, 
apparently due to the relative lack of effort spent on its calibration. 

4.3.2  Selection of a Nonlinear Model 

Initial work with the Speziale [1987] model was plagued by numerical difficulties which 
were traced to the material derivative in Fy.  Speziale [1987] had observed similar problems in his 
own studies and suggested that the trouble might be alleviated by numerical smoothing.   It was 
decided for the present work that the artificial dissipation introduced by filtering was unacceptable, 
and instead, encouraged by the lead of Nisizima and Yoshizawa [1987], the term was dropped 
altogether.   Recent observations by Yakhot and his colleagues [1992] and by Speziale [1995] seem to 
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indicate that the Speziale [1987] model, in practice, no longer includes this term.   Nevertheless, with 
Ftj dropped from the Speziale [1987] model for numerical reasons, dropped from the Myong and 
Kasagi [1990] model for generality, and dropped from the Yoshizawa [1986] model when thermal 
buoyancy effects are neglected, all of the models reduce to that proposed by Nisizima and 
Yoshizawa [1987].  At this point, only a set of constants needs to be selected; those suggested by 
Myong and Kasagi [1990] were chosen since they were complete and closely resembled those offered 
by Nisizima and Yoshizawa [1987]. 

4.3.3 Implementation of the Nonlinear Model into the q-u Model 

The nonlinear model has traditionally been reserved for work with the k-e model but can 
be easily adapted for the q-u model by substituting Equations 10 and 12 and the relations q = km and 

e Ik into Equation 17.  Thus, the nonlinear q-w model can be written as 03 

-pa,.«, :P1% 2fAj ~ <"r-cp 
G) >> -JSW6ij (18) 

where a summation is again performed over ß. This form includes a regrouping of constants which is 
easy to conduct analytically. Beyond that, there is no reason to expect that the values of the empirical 
constants should be effected by the change in variables; however, the calibration is easy to check. 

4.3.4 Calibration of the Model Constants 

For fully-developed, two-dimensional turbulent flows in equilibrium, Equation 9 reduces to 

dU       a) 

dy     V^ 

which allows the normal stresses from Equation 18 to be written as 

u[ul / k 

u2u2 / k 

2/3 

2/3 

UM, / k - 2/3 \    3   3 ) 

2Cj - 
-C, + 2C3 

\ 

C 
3 ) 

(19) 

where C, and C3 are empirical constants of the nonlinear model, Equation 18.  This equation, 
according to the model, is equally valid in the logarithmic region of a fully-developed channel flow or 
for homogeneous shear flow, both of which have available experimental data.  It should be noted that 
Equation 19 represents a system of three equations in two unknowns; however, since the equations 
represent measures of anisotropy and must add to zero, only two of the equations are independent. 

Experiments can help to determine the constants for the nonlinear model.   Champagne, 
Harris, and Corrsin [1970] acquired experimental data from a nearly homogeneous shear flow, while 

29 



Kreplin and Eckelmann [1979] acquired data from a two-dimensional fully-developed channel flow at 
v+ = 40.  In fact, two sets of data were taken for nearly homogeneous shear flow experiments since 
Harris, Graham, and Corrsin [1977] thought that the first experiment was contaminated by convective 
effects.  Figure 8 shows the calibrated constants C, and C3 based on these experimental samplings, as 
well as the values for the constants suggested by various authors.  Here, the scatter in the suggested 
constants falls within the range dictated by a combination of the validity of the model and the 
experimental error. 

Unfortunately, C2 does not appear in this study, and it is frequently not clear how 
investigators have arrived at its value.  In fact, suggested values of C2 vary drastically, and its 
calibration should be the focus of future research.  In the meantime, the moderate values by Myong 
and Kasagi [1990] were chosen.  Table 2 shows the improvement in the fluctuating velocities of a 
two-dimensional channel flow provided by the chosen model against experimental data at 
v+ = 40. 

Table 2.  Fluctuating Velocities in the Logarithmic Layer of Fully-Developed Channel Flow 

Linear Model Nonlinear Model1 Experimental Data2 

»1  /MT 
1.50 2.04 2.10 

"2 ' "T 
1.50 1.00 1.02 

V"T 1.50 1.22 1.14 

1 Myong and Kasagi [1990] 
2 Kreplin and Eckelmann [1979] 

4.3.5 Numerical Implementation 

As mentioned previously, the nonlinear model in Equation 18 simply adds new terms to 
the traditional linear model.  Thus, if the Reynolds stress tensor is written 

-PW;M.   =   (-PW,W,) +   [-OUUA r   ' J        \   r   ' Jllinear        \   r   ' Jin, 'nonlinear 

then Equation 16 becomes 

Dt     dx. V (-pM,.M,) + (■ 
\   r   ' Jllinear      Pv V dx, 

-p«,«,) 
nonlinear 

(20) 

The nonlinear term also enters into the turbulence equation production terms; however, the terms can 
be shown to be identically zero in two-dimensional flows and are dropped in three-dimensional 
problems as a simplification.  The additional terms in Equation 20 can be considered correction terms 
and are expected to be small.  Thus, the additional terms were treated explicitly and added with a 
minimum of coding changes since the implicit solver was left intact. 
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5.  Coupling with a Vehicle Dynamics Solver 

Prediction of a vehicle's trajectory requires coupling the fluid dynamics and the vehicle 
dynamics.  The equations governing the fluid dynamics are the Navier-Stokes equations; Newton's 
Second Law governs the vehicle's motion, resulting in the six-degree-of-freedom (6DOF) equations. 
These equations describe the acceleration of a body at an instant in time, given the totality of forces 
and moments acting on the body.  Integration of these equations yields the time history of the body's 
velocity and rotation rate. From this information, the trajectory (that is, the orientation and position 
of the vehicle) can be deduced using purely kinematical relations. 

There are two relevant coordinate systems involved in the determination of the trajectory. 
First, there is a body-fixed system (x, y, z) that is rigidly attached to the moving vehicle.  It is this 
system to which the 6DOF equations are referenced.  Additionally, there is an inertial or "earth"- 
fixed system (X, Y, Z) to which the position and orientation of the vehicle are referenced (it is also in 
this system that the RANS equations are solved).  By convention, this system is defined with X 
pointing North, Y pointing East, and Z pointing toward the center of the Earth (that is, gravitational 
acceleration points in the positive Z-direction).  As this is taken to be an inertial system, the rotation 
of the Earth is neglected.  Figure 9 shows a schematic of these frames of reference. 

The fluid dynamic/vehicle dynamic coupling procedure is as follows.  The flow solution 
about the vehicle is advanced in time by integrating the Reynolds-averaged Navier-Stokes equations- 
by the procedure described in the numerical approach section-over an increment of time from t to 
t+At.  The hydrodynamic forces and moments are then updated by integration of the pressure and 
shear stresses over the vehicle surface.  With these forces and moments, the 6DOF equations and the 
kinematic relations are integrated over the same At to yield the position and velocity of each point in 
the computational grid at t+At.  This process is then repeated for the next time interval.  The solution 
procedure for the RANS equations has been discussed previously; the solution procedure for the 
equations governing the vehicle's trajectory is described in this section.  It should be noted that the 
code for the assembly and solution of the 6DOF and kinematical equations utilized in this work is 
derived directly from the vehicle trajectory code TRJv by Smith and Watkinson [1994]. 

The 6DOF equations as described by Gertler and Hagen [1967] for a submarine 
configuration can be simplified and rewritten in the following form 

^-=A-1(f-b), (21) 
at 

where A is the "mass" matrix, s is the vector of velocities and rotation rates, b is the inertial coupling 
vector, and/is the vector of forces and moments (due to gravity, buoyancy, and hydrodynamic 
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phenomena). The "mass" matrix is given by 

m 0 0 0 

0 m 0 -mz 

0 0 m myG 

0 -mzG myG K 
nzG 0 -mxG -'* 
myG 

mxG 0 -L 

mzr 

-mxr 

*y 

yz 

-myG 

mxc 

yz 

where m is the vehicle mass, (xG, yG , Zo) is *e location of the center of gravity, (Ix, Iy , 4 ) are the 
moments of inertia of the vehicle, and (/^ , 4 , ^) are the products of inertia of the vehicle-all of 
which are measured in the body-fixed frame-of-reference.  The vector of velocities and rotation rates 
is given by 

s = 

u 

V 

w 

p 

q 

r 

where (u, v, w) are the linear velocities and (p, q, r) are the rotational velocities in the body-fixed 
frame of reference.  The inertial coupling vector is defined as 

m[wq-vr~xG(q2+r2) +yGpq + zgr] 

m[ur - wp -yG(r 2+p2) + z^r ^x^p] 

mfvp -uq-zG(p2 + q2)+ xjp +yGrq] 

(Iz ~I)qr- Ixpq + IJr 2-q2)+ l^r + m[yG(vp -uq)- zQ(ur - wp)] 

(Ix -IJrp- I^qr+IJp 2-r2)+ I^qp + m[zG(wq - w) - xG(vp - uq)] 

(iy - ijpq - typ+ V? 2 ~P 
2) + IJrq + m^xa(ur ~ WP) ~yG(W(i ~ vr)J 
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Finally, the applied forces and moments appear in the following form: 

-(W-B)sin(Q) + Fx 

(W-B)cos(Q)sin(<k) + Fy 

(W-B)cos(Q)cos($) + Fz 

(yGW-y^)cos(Q)cos(^)-(zGW-z^)cos(Q)sin(^) + Mx 

-(xaW- xß) cos(d) cos(§) ~(zGW- zß) sin(B) + My 

(xcW-xß)cos$)sin(§) + (yGW-yß)sin(§) + Mz 

f 

where W is the vehicle weight, B is the vehicle buoyancy, (xB, yB, zB) is the location of the center of 
buoyancy in the body-fixed frame of reference, (0, 0) are the Euler angles about the inertial X and Y 
axes, and (Fx, Fy, Fz, Mx, My , A^) are the hydrodynamic forces and moments in the body-fixed 
frame of reference.  It is these forces and moments that are computed from integration of the fluid 
stresses over the vehicle surface.  Clearly, it is through these terms that the fluid dynamic/vehicle 
dynamic coupling occurs.  Jonnalagadda [1996] describes the force and moment calculation 
procedure. 

To deduce the inertial orientation and position of the vehicle from the above relations, 
seven additional kinematic relations are required: four for the orientation and three for the position. 
The inertial orientation is described by quarternions whose evolution equations may be written in the 
following form: 

dt 
(22) 

where e = [e0, e,, e2, e3]
T and 

Q = i- 

0 -P -q -r 

p 0 r -1 

1 -r 0 P 

r q -P 0 

The more familiar Euler angles (</>, 6, \p) are related to the quaternions by the following equations: 

2(e0e1+e2e3) 
tan(§) 

(eo~ei ~e2+es) 
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tan(Q) = 
2(e0e2-e,e3) 

2 sitifö) (e0el + e2e3) + cos(§) (e] - e] - e] + e3) 

and 

tanfty) 
2(e1e2 + e0e3) 

,2       2       2       2. (e0 +ej-e2 -e3) 

The Euler angles (4>, 6, $) represent right-hand rotations about the inertial (X, Y, Z) axes respectively. 
Finally, the inertial position is given by the solution to the following system: 

dr 
dt 

= h , (23) 

where r = [X, Y, Z\T and 

u[(e„ + et) - (e2 + e3)J + v[2(ele2 - e0e3)J + w[2(ele3 - e0e2)J 

u[2(ele2 + e0e3)J + v[(e2
0 + e2) - (ef + e3)J + w[2(e2e3 -e0ej)J 

u[2(ele3 - eQe2)] + v[2(eQel + e2e3)J + w[(e„ + e3) - (e2 + ef)J 

In theory, Equation 21 can be integrated for the body-fixed velocities and rotation rates 
independently of Equations 22 and 23.  Using these time-dependent velocities and rotation rates, 
Equation 22 can then be integrated for the vehicle orientation.  Finally, with everything on the right 
hand side of Equation 23 known, it is a simple matter to integrate Equation 23 for the inertial position 
of the vehicle.  In practice, however, Equations 21 through 23 are combined into a single system of 
13 evolution equations.  This system is then numerically integrated in time using a fourth-order 
accurate Runge-Kutta-Merson scheme. 

Like the RANS equations, the 6DOF equations are actually solved in nondimensional 
form.  When the RANS equations are nondimensionalized, the Reynolds number is naturally 
introduced.  For a given geometry, this lone nondimensional parameter dictates the behavior of the 
resultant flow field.   In other words, with everything else constant, different Reynolds numbers can 
potentially yield vastly different flow fields.  When the RANS equations are coupled with the 6DOF 
equations and nondimensionalized, in addition to the Reynolds number, there are 14 new, independent 
nondimensional parameters.  These include: nondimensional weight, buoyancy, moments of inertia, 
products of inertia, as well as the normalized locations of the centers of gravity and buoyancy.  A 
change in any one of these 15 parameters has the potential to substantially impact the resultant vehicle 
trajectory.  This dependency highlights the sensitivity in predicting the maneuvering characteristics of 
an underwater vehicle. 
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6.  Propulsor Treatments 

The simplest way of incorporating the primary function of the propulsor is to model the 
propulsor within UNCLE using body forces.  A body-force propulsor model that is applied at a single 
plane is often called an actuator disc, while a model that is applied over a region more representative 
of the actual propulsor region is sometimes referred to as an actuator duct.  However, as the rotating 
blades within a propulsor interact with time-dependent flow structures shed from upstream surfaces on 
a maneuvering vehicle, the simple body-force model will prove to be inadequate, especially for 
moderate and extreme maneuvers.  Within this maneuvering program, the research team developed 
both types of propulsor treatments. 

6.1  Body-Force Propulsor Model 

The research team selected a body-force model because of its simplicity, its computational 
efficiency, and their experience with the model for similar simulations.  For instance, Whitfield and 
Jameson [1984] used a body-force model for an open propeller, while Pankajakshan, Arabshahi, and 
Whitfield [1993] used one for a ducted fan.  As explained by Whitfield and Jameson [1984], the basic 
approach consists of including body forces in Equation 1, such that the model operates on the fluid in 
a manner similar to the way that an actual propulsor operates on the fluid. 

The model requires data from either measured databases or conventional propulsor design 
tools.  Yang, Hartwich, and Sundram [1990] showed how to use this type of data for a body-force 
propulsor model.  Specifically, the prescribed body forces were based upon known parameters of 
thrust and torque coefficients (CT and CQ) and an assumed circulation distribution, g(r).  The radial 
distribution of the axial and circumferential body forces per unit volume were obtained from 

FAD 

and 

FsSr) - 

T    tip 

% 
4 Ax   f gir) r dr 

rhub 

C
Q 

rlP SJr) 

2 Ax   f s(r) r dr [M 

where rhub and r!ip are some reference radii of the propulsor blade hub and blade tip, respectively, and 
Ax is the thickness of the actuator disc (or duct).  The circulation g(r) was assumed to be 

g{r) = r ,]\ - r , 
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where 

r   ~  rhub 

rtip   ~  rhub 

These resulting components of the body force vector were then distributed to the center of the 
appropriate cells in this cell-centered finite-volume scheme within the region where the propulsor was 
located. 

6.2 Actual Rotating Propulsor 

For maneuvers in which the body-force model proves inadequate, the research team 
needed to develop the capability to compute the complicated unsteady interaction between a marine 
propulsor and stern appendages.  Past researchers in the computational turbomachinery community 
have previously developed technologies to treat the problem of transferring data between grid blocks 
in relative motion.   For instance, Rai [1985] developed a zonal method, in which the blocks slide 
against one another~and, consequently, grid lines become discontinuous across a block interface. 
This method requires complicated interpolation to maintain flux conservation at this interface. 
Another method proposed by McDonald [1985] maintains grid continuity by continuously distorting 
the grid lines as the blocks moved relative to one another, resulting in a highly-stretched grid. 

This work adopts the method used in the compressible versions of the UNCLE code for 
turbomachinery, called localized grid distortion (LGD).  Whitfield and his colleagues [1987] 
performed much of the early work, with Janus [1989] and Janus and Whitfield [1989,1990] 
completing the development of LGD.  Janus, Whitfield, Horstman, and Mansfield [1990], Janus, 
Horstman, and Whitfield [1992], and Chen and Whitfield [1993] have provided further experience for 
compressible flow problems.  The LGD method insures continuous grid lines across block interfaces 
with relative motion and also minimizes grid stretching.  The data communication between blocks is 
accomplished without interpolation.  Flux conservation across block boundaries is maintained to 
preserve the conservation property of the finite-volume scheme. 

Briefly, LGD calls for distortion of grid cells in the vicinity of the relative motion block 
interface in order to maintain continuity of grid lines across the interface.  During this process, the 
adjacent blocks must continuously switch communication partners (referred to as "clicking") to 
minimize the grid stretching.  A simple bookkeeping procedure insures a correct match between the 
communication partners so that information can be exchanged between the two blocks.  Numerical 
temporal error can be introduced when switching communication partners; however, this error is 
minimized by using multiple Newton subiterations and/or multigrid cycles.  Since the cell volumes in 
the vicinity of block interface change in time, Thomas and Lombard [1978] maintain that the 
geometric conservation law must be satisfied. 
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7.  Results with the Baseline Flow Solver 

Using the UNCLE code described previously, the research team proceeded with the 
application of this baseline solver to various flow problems.  The ultimate objective of this work, 
which was the prediction of the trajectory of fully-appended, self-propelled, maneuvering vehicles, 
involved more complicated flow fields and configurations than those corresponding to the experiments 
for which measured data were available.  Nevertheless, the team took the approach to perform rather 
critical comparisons with either analytical solutions or experimental data that were available.  In this 
manner, computations could be carried out in order to validate the code to the extent possible, as each 
additional capability and improvement was added. 

This section includes both steady and unsteady computations using the baseline UNCLE 
code with the algebraic turbulence model.  Later sections will include results using the parallel 
version of the code, using two-equation turbulence models, and incorporating the coupling between 
the fluid dynamics and the vehicle dynamics.  The quality of agreement for all of the steady and 
unsteady flow computations with experimental data and analytical solutions has been considered 
reasonable to excellent.  It should be noted that all computations were carried out on several different 
computer workstations; such as an IBM RS6000 Model 560 (512 Mb RAM), an IBM RS6000 
Model 590 (1536 Mb RAM), and a SGI Power Challenge R4400 and R8000 (2048 Mb RAM). 

7.1  Flat-Plate Boundary Layers 

The ability of the flow solver to correctly compute the flow over a maneuvering vehicle 
depends strongly on its ability to resolve boundary layers.  Obtaining the proper boundary layer 
velocity profiles will provide the correct skin-friction distribution and generate the proper amount of 
vorticity.  Therefore, while the computation of flat-plate boundary layers hardly seems ambitious, it is 
prudent that the numerical scheme being used can predict the appropriate velocity profile.  The 
present computational approach has an advantage in computing these profiles since the Roe 
approximate Riemann solver was constructed in such a way that discontinuous surfaces, such as slip 
lines and contact discontinuities, can be captured exactly on grids that are properly aligned. 
Consequently, viscous regions can be captured accurately with a modest number of grid points. 
Figure 10 gives a comparison of the numerically-obtained boundary layer velocity profile to the 
Blasius velocity profile for laminar flow past a flat plate at a Reynolds number of 10,000 (based on 
plate length).  While the agreement is not exact, it is considered to be good, especially in light of the 
fact that there are less than ten grid points in the viscous region.  For turbulent flow, Figure 11 
shows comparisons between the computed velocity profile and the law of the wall for a Reynolds 
number of 5,000,000 (based on plate length).  Once again the velocity profile has been quite 
accurately predicted with less than fifteen grid points in the viscous region. 

7.2 SUBOFF Barebody 

Next, the research team moved to a test case where they could apply the UNCLE code to 
the computation of turbulent axisymmetric flow over a body typical of an actual underwater vehicle. 
This barebody represents the simplest form of a geometry that was used throughout this maneuvering 
program.  Taylor [1991] also used the UNCLE code to make comparisons between computations and 
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experimental data obtained by Huang, Groves, and Belt [1980] for a similar axisymmetric body with 
an inflected stern. 

In an effort to obtain code validation data on a submarine-type vehicle, Groves, Huang, 
and Chang [1989] designed an axisymmetric hull model that could be used with and without typical 
appendage components, such as a fairwater (or sail) and four identical stern appendages.  They 
referred to the model and the subsequent experimental project as SUBOFF.  Initially, the project was 
established as a competitive, blind test case for the evaluation of several computational codes.  Huang 
and his colleagues [1992] conducted experiments by installing SUBOFF within a wind tunnel using 
two support struts. The model included a large number of static-pressure taps and some small obstacle 
blocks that stagnate the flow very close to the surface to produce a pressure rise that is approximately 
proportional to the shear stress.  They also used various hot-film probes to measure the mean 
velocities and Reynolds stresses in the aft region of the model, close to where the propeller would 
exist.  Using a viscous-inviscid interaction procedure, they computed the blockage effects within the 
tunnel and corrected the data. Using an identical model (except for the locations of static-pressure 
taps), Roddy [1990] reported experimental results using two support struts to tow the model in a 
towing tank.  Aside from acquiring additional static-pressure measurements, he installed strain-gauge 
force cells within the support struts to obtain force and moment coefficients.  All of the experiments 
were conducted at different angles of attack or drift at a Reynolds number of 12,000,000 (based on 
model length) for the wind tunnel tests and 14,000,000 for the towing tank tests. 

The computation of the barebody SUBOFF at zero angle of attack was the first application 
of the multigrid algorithm to high Reynolds number turbulent flow.  As a consequence of the 
relatively high Reynolds number of 12,000,000, grid lines must be located very close to the surface 
of the geometry in order to resolve the boundary layer.  Three grids, indicated by Grids I, II, and III, 
were built with the same overall number of points (129x65x2 = 16,770), but with different grid 
spacings near the surface (where the normal distance to first grid cell equals 0.00001, 0.000001, and 
0.0000001 of the body length-with an average y+ value of 3.67, 0.363, and 0.036, respectively). 
The minimum value of y+ is an important measure for the resolution of the turbulent boundary layer. 
Figure 12 shows that these grids result in extremely high aspect ratios of grid cells on the surface. 
The three different grids in this study provided the opportunity to investigate the grid sensitivity of the 
multigrid scheme and to examine the efficiency and accuracy of the solution using such high aspect 
ratios and stretched grids-which are essential for simulation of high Reynolds number flows. 
Figures 13 through 18 show the convergence histories and CPU times of both the multigrid and 
single-grid solutions on the three different grids.  Very fast convergence rates were obtained in 
multigrid solutions for all cases.  The residuals were reduced to machine accuracy within 150 to 250 
multigrid cycles, which resulted in a 45-60% savings in CPU time over single-grid solutions.   These 
figures also demonstrate that the convergence property of the multigrid scheme was not sensitive to 
the grid spacing for up to 0.000001 of the body length and that this algorithm was robust in handling 
extremely high aspect ratio grids.  Even though the convergence rate is a little bit slower on Grid III, 
which had the closest first grid point to the surface, it was still quite satisfactory.  For the multigrid 
solutions using Grid III, Figures 19 and 20 show the surface-pressure coefficient, Cp, and the skin- 
friction coefficient, Cf, respectively.  These solutions match reasonably well with the experimental 
data of Huang and his colleagues [1992], with little difference found between the multigrid and single- 
grid solutions. 

Figure 21 demonstrates an interesting feature associated with the multigrid scheme.  The 
final skin-friction coefficient distribution for the multigrid algorithm was reached at an earlier stage of 
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convergence than for the single-grid scheme. The Cf distribution does not change for the multigrid 
solution once the residual is dropped nearly 3 orders of magnitude from the initial -2.37 to -5.11. 
But for the single-grid solution, a reduction of 5 orders of magnitude in residual (from the initial 
-2.37 to -7.41) is required to reach the final solution.  Note that skin friction is a very sensitive 
parameter since it involves the gradient of velocity near the surface.  Once this parameter is 
converged, it is safe to say that all other variables are also converged.  The implication of this result 
is that the actual savings in CPU time of the multigrid solution over the single-grid solution should be 
higher than indicated by the previous figures. 

A solution at a very high Reynolds number of 1,200,000,000 was also obtained on 
Grid III, which resulted in an average y+ value of 2.62 for the first grid cell off the surface.  This y+ 

value is small enough to resolve the viscous sublayer at this high Reynolds number.   Figures 22 and 
23 show the convergence histories and CPU times of both multigrid and single-grid solutions. 
Although the convergence rates of both multigrid and single-grid solutions at this Reynolds number 
are slower than those at the previous Reynolds number, a 65 % savings in CPU time is still achieved 
with the multigrid solution over the single-grid solution.  Figures 24 and 25 show the computed Cp 

and C{ distributions along the hull surface.  Since no experimental data was available for this 
geometry at this Reynolds number, a correlative comparison was made on the Cf curve at Reynolds 
numbers of 12,000,000 and 1,200,000,000 using the formula given by Schlichting [1979].  It is 
apparent that a reasonable skin-friction distribution was obtained at this Reynolds number. 

7.3 Prolate Spheroid 

During a maneuver, vehicles operate at an angle of attack, creating a cross flow along the 
hull and a subsequent three-dimensional separation.  A physics-based means of predicting a vehicle 
maneuver must be able to compute this three-dimensional separation in order to obtain the correct 
static-pressure and skin-friction distributions, as well as to correctly calculate where vortical structures 
leave the surface and enter the flow field.  As part of a continuing experimental research program, 
Chesnakas, Simpson, and Madden [1994] acquired data for a 6:1 prolate spheroid at 10° angle of 
attack, and this experiment provided an excellent test case to show how well UNCLE could predict 
flow over a body with cross-flow separation. 

The UNCLE simulation of the turbulent flow over a 6:1 prolate spheroid at 10° angle of 
attack was conducted at a Reynolds number of 4,200,000 (based on the model length and the 
freestream velocity).  Symmetry of the geometry was exploited to reduce the total number of grid 
points used in the O-type grid of size 81x41x41 (136,161 points).  The average y+ value of the first 
grid line near the body was 2.56.  Numerical solutions were obtained for the single grid, for a 4-level 
multigrid with full-coarsening, and with semi-coarsening in the axial and radial computational 
directions.  Figures 26 and 27 show the residual histories and CPU times.  These results indicate that 
semi-coarsening has the best convergence rate, with 56% savings in CPU time over the single-grid 
solution, while full-coarsening saves 28.6% in CPU time compared to the single-grid solution. 

Figure 28 provides comparisons between the numerical results and the experimental data 
for the static-pressure distributions along the prolate spheroid at different circumferential locations 
along the body.  Next, Figures 29 through 31 show the profiles of the «-component of velocity at 
sections x/L = 0.4, 0.6, and 0.772, where r is the normal distance from the surface.  These particular 
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sections were chosen for comparison because the primary separation is not yet developed at 
x/L = 0.4, is incipient at x/L = 0.6, and is well developed at x/L = 0.772-according to Chesnakas, 
Simpson, and Madden [1994].  Note that the measured u velocity component is in the local freestream 
direction, whereas the computed u velocity component is in the axial direction of the body.  It was 
assumed that the difference between these quantities was not significant since the angle of attack is not 
large.  Computational results show good agreement with the experiment at most locations, except for 
the last section at JC/L=0.772 for circumferential locations corresponding to values of <j> greater than 
115°, which may be due to the algebraic turbulence model used for these computations. 

7.4 Appendage Junction Flow 

An actual maneuvering underwater vehicle can include a number of appendages.  In the 
junction region where the appendage is attached to the hull, the flow undergoes a three-dimensional 
separation and develops a "horseshoe" or "necklace" vortex.  For the same reason as with the three- 
dimensional cross-flow separation on the hull, a physics-based means of predicting a vehicle 
maneuver must be able to compute this three-dimensional flow field. To investigate this type of flow, 
Devenport and Simpson [1990] conducted a comprehensive experiment, where they mounted a 
modified NACA 0020 airfoil on a flat plate in their wind tunnel. The Reynolds number was 500,000 
(based on the airfoil chord length). 

The research team performed a simulation of this appendage junction flow using the 
baseline UNCLE code.  The experimental data selected for comparison are the distributions of the 
static-pressure coefficient, Cp, on both the wing and the flat plate, and the u (axial) component of 
velocity at the various stations shown in Figure 32.  These stations correspond approximately to the 
separation (or saddle) point upstream of the leading edge, the leading edge, the maximum wing 
thickness, and the trailing edge.  The computational grid used is an H-type grid 
(129x33x33 = 140,481 points) with spacings off solid surfaces which resulted in average minimum 
v+ values on the wing and flat plate of 2.74 and 1.61, respectively.  Figures 33 and 34 show the 
residual histories and CPU times for the single-grid and multigrid solutions.  The final residual for 
both solutions could not be reduced to machine accuracy, which probably is a consequence of the 
complicated behavior of this flow.  Nevertheless, about a 50% savings in CPU time has been 
achieved for the multigrid solution over the single-grid solution. 

Comparisons of the Cp distribution between the experiment and the computation on the 
wing and flat plate are given in Figures 35 and 36, respectively.  The computed results agree 
reasonably well with the experiment.  Figure 37 shows the computed flow particle traces on the flat 
plate around the wing compared to skin-friction lines obtained from flow visualization.  Good 
agreement is obtained in both the overall shape and the size of the horseshoe vortex system.  The 
primary separation lines starting from the leading-edge separation point wrap around the wing, and 
trail-off downstream.  The primary separation point is located at x/L = -0.120 in the experiment and 
x/L = -0.115 in the computation.  Another region of separation near the trailing edge can also be 
found in both the experiment and the computation.  At the various stations shown in Figure 32, 
Figures 38 through 41 present both the computed and measured streamwise velocity components. 
Again, good agreement between the computation and the experiment was obtained at all computed 
stations. 
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7.5 Vortex Preservation 

Three-dimensional cross-flow separation and appendage junction separation create vortical 
structures that leave the surface of a maneuvering vehicle and enter the flow field.  Since the 
interaction of these vortices with downstream surfaces can significantly change the hydrodynamic 
forces and moments on the vehicle, a physics-based prediction method must preserve these vortices as 
they convect downstream.  In order to test the UNCLE code's ability to handle this vortex 
preservation, the research team used a test case that involved the convection of an idealized vortex 
immersed in a uniform flow.  Several other researchers have used a similar vortex preservation test to 
assess the temporal accuracy and dissipative nature of different numerical schemes.  These researchers 
include Rai [1987],  Liu, Davoudzadeh, Briley, and Shamroth [1990], Wake and Choi [1995], and 
Davoudzadeh, McDonald, and Thompson [1995]. 

This test case typically consists of either a Thomson-Rankine vortex (as given by 
Ogawa [1993]) or a Lamb-Oseen vortex (as given by Batchelor [1967]) immersed in a uniform 
freestream flow.  The pressure distribution for this flow field has a minimum value at the center of 
the vortex, which increases asymptotically to the freestream value with increasing distance from the 
vortex core.  In the absence of physical viscosity (as governed by the Euler equations), the value of 
the minimum pressure at the center of the vortex should remain constant as the vortex is convected in 
the uniform flow.  Any deviation in the pressure at the center of the vortex can then be attributed to 
the numerical scheme and can be viewed as numerically-induced decay.  Thus, monitoring the core 
pressure as the vortex is convected is a good indicator of a numerical scheme's capability to preserve 
the vortex. 

All of the computations have been performed using the Thomson-Rankine vortex model 
provided by Ogawa [1993].  This model had an idealized velocity profile that varied linearly with 
distance within the core and inversely with distance outside of the core.  This distribution proved to 
be a very severe test for the flow solver since at the radius of the core, where the maximum 
tangential velocity occurs, the velocity distribution was not continuous.  Analytical expressions for the 
axial velocity, the azimuthal velocity, and the pressure can be prescribed as a function of the distance 
from the center of the vortex.  The strength of the vortex was chosen such that the maximum 
tangential velocity at the radius of the core was 0.4 and the nondimensional pressure at the core was 
0.84.  All the results contained herein were obtained on a H-type rectangular grid measuring 
52.5 x 7.5 radii (the core radius of the vortex being 1.0) and with equal spacing in the axial- and 
azimuthal-coordinate directions.  Three different grid densities were used: a coarse grid of size 
211x31 (6,541 points), a medium grid of size 421x61 (25,681 points), and a fine grid of size 841x121 
(101,761 points).  The computations were initialized by simply adding a uniform axial flow (u = 1) 
to the previously mentioned analytical expressions for the velocity.  The inviscid flow was then 
allowed to evolve in time.  Since the vortex was embedded in a uniform flow, the position of the 
vortex was known at all times and the boundary conditions were updated accordingly to the exact 
solution at each time step.  A nondimensional time step of 0.025 was used, and the vortex was 
allowed to travel 45 radii downstream. 

For the coarse grid, Figure 42 shows the computed variation of core pressure versus radii 
traveled.  Four unsteady Euler solutions with different numbers of Newton iterations per time step are 
presented.  Once again, both first- and second-order temporal discretizations were tried and the 
solutions were virtually indistinguishable.  Each calculation was terminated after the vortex traveled 
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twenty core radii due to the unacceptable rise in the core pressure.  This grid was found to be too 
coarse to accurately model this problem.  In Figure 43, the initial contours of pressure, w-component 
of velocity, and v-component of velocity are shown along with an outline of the grid.  The calculation 
with three Newton iterations was carried out for a full forty-five radii of travel and the core pressure 
increased to approximately 0.9, over seven percent of its original value.  Figure 44 contains the 
contours for the same quantities as Figure 43 at this point.  It is interesting to note that although the 
vortex has lost a significant amount of its strength, the structure of the vortex is essentially unaltered. 

For the next set of calculations on the medium size grid, Figure 45 contains the 
comparison of core pressure versus distance traveled for various iterations.  The core pressure was 
preserved rather well, with the final value being within about one percent of the original value for 12 
and 24 iterations.  However, Figure 45 also shows that the vortex will continue to dissipate as it 
convects further downstream.  For this medium size grid, Figure 46 demonstrates the importance of 
the second-order accurate temporal discretization for these vortex preservation tests.  Even on the fine 
mesh, a second-order temporal discretization was necessary to obtain good results. The final 
computation on this fine grid used only three Newton iterations.  Here, Figure 47 shows that the 
difference in the final and initial core pressure differs by less than one percent and, even more 
importantly, the dissipation is not increasing with distance traveled.  While it is important that these 
results require less Newton iterations to achieve the desired accuracy, this fine grid includes 16 grid 
points within the vortex core-a number too fine for most practical maneuvering problems. 

7.6 SUBOFF with Appendages 

In the previous test cases, the research team isolated important physical phenomena and 
compared the numerical simulations using the baseline UNCLE code with experimental data and 
analytical solutions.  Next, the team moved closer to the more complex geometry of an actual 
underwater vehicle, where several of these physical phenomena occur simultaneously and result in 
forces and moments acting on the body.  Therefore, for the next set of test cases, the team selected 
the SUBOFF body with appendages.  This appended body provided the first application of the 
multiblock capability, as used with the multigrid algorithm. 

7.6.1  Flow Field 

The first appended-body test case involved the turbulent flow about SUBOFF with four 
stern appendages (without the sail) at a Reynolds number of 12,000,000 (based on total body length) 
and at 0° and 2° angles of attack.  To exploit symmetry, an 8-block O-type grid was built around 
180° of the body with a total number of 65x33x132 (= 283,140) grid points.  The grid was split into 
two parts in the /-direction from the leading edge of the fins, and four parts in the ^-direction.  No 
blocking was made in the ./-direction.  Figure 48 shows the 8-block grid for this configuration.  Each 
fin surface has 17 grid points in both the /'- andy'-directions.  The average minimum y+ value is 0.380 
on the body, and 0.409 on the fin surface. 

Figure 49 presents the convergence histories of the blocked vertical multigrid solutions for 
both the 0° and 2° angles of attack.  The figure shows that for both 3-level multigrid solutions, the 
total residual for all blocks is reduced by 3 orders of magnitude within 250 multigrid cycles.  In fact, 
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no change was found in the flow variables (both velocity and pressure) after the residual was reduced 
by 2.5 orders of magnitude, which is about 200 multigrid cycles.  The solution at this stage is 
referred to as the engineering answer.  Huang and his colleagues [1992] presented experimental data 
that included the distributions of pressure coefficient on the body and fin surfaces, as well as the 
velocity profiles close to where the propeller would exist (x/L = 0.978), which are used to compare 
with the computed results.  Comparisons of the computed and measured pressure coefficients on the 
hull, at both 0° and 2° angles of attack, are presented in Figures 50 and 51, respectively.  The 
computations show good agreement with the experiment at both angles of attack.  Figures 52 and 53 
show the computed and measured pressure coefficients on the upper fin surface at both 0° and 2° 
angles of attack, where the flow separated near the trailing edge of the fin~which made the flow 
structure in this region very complicated.  Excellent agreement between the computation and the 
experiment is obtained at both 0° and 2° angles of attack.  Note that there were only 17 grid points in 
both the i- and y'-direction on the fin surface.  Although Figure 54 shows that the comparison of 
computed and measured «-velocity distributions at the potential propeller location of x/L = 0.978 was 
not very satisfactory, the overall shape is matched qualitatively.  The reason for this discrepancy may 
have been due to several factors, including the algebraic turbulence model, especially the wake model 
used to handle such a complex flow.  There is also some uncertainty in the SUBOFF experimental 
data at this location since the velocity data do not conform to an inner-variable plot (u+ versus y+). 

The next test case involved the flow around the SUBOFF body with both a sail and the 
four stern appendages, at both 0° and 2° angles of attack.  Again, symmetry was exploited in order 
to build grids around 180° of the body.  Three C-type grids were used in the computations~a coarse 
grid of size 145x41x97 (576,665 points), a medium grid of size 193x65x97 (1,216,865 points), and a 
fine grid of size 289x65x132 (2,479,620 points).  All grids were split into 12 blocks, with 3 blocks in 
the z-direction and 4 blocks in the ^-direction.  Note that the block boundaries are located in the 
critical regions of the trailing edge of the sail and the leading edges of the stern appendages.  Each 
block has the same grid size.  In the fine grid, 41x41 (1,681) grid points are placed on the sail 
surface and 25x25 (625) grid points on each of the fin surfaces.  Figure 55 shows the 12-block fine 
grid for this geometry.  In this grid, the average of the minimum y+ values are 1.5 on the hull 
surface, 0.3 on the sail surface, and 0.4 on the fin surfaces.  The reasons for choosing different grid 
sizes in this case are, first, to study the convergence property of the current multiblock, multigrid 
method as the grid size increases and, second, to compare the quality of the results on these different 
size grids-which hopefully may provide some guideline in selecting grid sizes for simulating real 
maneuvering problems.   Figure 56 presents the convergence histories on these three grids, with the 
fine-grid solution including both 0° and 2° angles of attack.  The figure shows that the convergence 
rates obtained on the three grids are about the same.  This indicates that the current multiblock, 
multigrid code is not sensitive to the grid size, and a nearly grid-independent convergence rate is 
achieved in all the cases.  For all three grids, a converged solution is reached within 250 to 300 
multigrid cycles-when the residual is reduced by 3 orders of magnitude~and an engineering solution 
(with the residual reduced by 2.5 orders of magnitude) is obtained in about 200 multigrid cycles. 

The results obtained on the fine grid at both 0° and 2° angles of attack are compared with 
the experimental data acquired by Huang and his colleagues [1992].  Figure 57 shows the pressure- 
coefficient distributions on the hull surface obtained by the computation and the experiment at 0° 
angle of attack.  The overall comparison is favorable except for the region of the sail-body junction, 
where a pair of horseshoe vortices were generated near the leading edge of the sail and where the 
flow separated at the trailing edge of the sail.  Figures 58 and 59 show the computed and measured 
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pressure coefficient distributions on the sail surface at 0° and 2° angles of attack, where the 
experimental data was taken from the wind tunnel results for SUBOFF with the sail only, due to a 
lack of experimental data when the four stern appendages were included.  Figures 60 and 61 show 
computed and measured pressure coefficient distributions on the upper fin surfaces at both 0° and 2° 
angles of attack.  Comparisons of pressure coefficients on both the sail and fin surfaces show 
excellent agreement between the computation and experiment at 0° angle of attack, and reasonably 
good agreement at 2° angle of attack in this very complicated flow region.  The computed «-velocity 
profiles at the potential propeller location (x/L = 0.978) at 0° angle of attack qualitatively match well 
with the experiment, as shown in Figure 62. 

As mentioned previously, one of the objectives in this case was to investigate the 
influences of the grid size on the solution; that is, how many grid points are required in order to 
resolve this flow without losing any important details.  To this end, a comparison is made among the 
solutions at 0° angle of attack obtained on all three grids.  Figure 63 shows the computed crossflow 
velocity vectors at the potential propeller location of x/L = 0.978 for the three grids.  It is seen that a 
pair of tip vortices generated by the stern appendages can be observed on the medium and fine grids, 
but not on the coarse grid. This observation suggests that a minimum of about one million grid 
points are needed for this configuration in order to resolve the vortical flow structures. 

7.6.2 Hydrodynamic Forces and Moments 

The previous validation comparisons for the SUBOFF computations have involved flow 
variables such as static pressure, velocity, and skin friction.  Since the trajectory of a vehicle depends 
on the forces and moments produced by the flow over the vehicle, further validation comparisons are 
required in order to use the UNCLE code for maneuvering predictions.  Roddy [1990] has reported 
experiments that include measurements of forces and moments acting on the SUBOFF body, with and 
without appendages.  These data were used in what might be considered "component form"~that is, 
with various appendage combinations~to determine how accurately the forces and moments on the 
body with these isolated appendages could be predicted.  While it is well known that one can obtain 
excellent agreement between computational and experimental results by "tuning" a turbulence model 
for each data point, this type of comparison is not appropriate for verifying a code's capability of 
computing a general problem.   Therefore, all these computations were performed with the same 
algebraic turbulence model defined in the turbulence modeling section of this report. 

Three different configurations of the SUBOFF model have been considered to validate the 
forces and moments acting on the body surface at different angles of drift.  These three configurations 
included the SUBOFF barebody, the SUBOFF hull with the four stern appendages, and the SUBOFF 
hull with a sail.  All experiments were carried out at a Reynolds number of 14,000,000 (based on 
total body length). 

In order to give the reader a better idea of how well the computed results match with the 
experimental data, the next figures include error bars that represent the uncertainty in the 
measurements acquired by Roddy [1990].  Although Roddy [1990] did not report the data uncertainty, 
one can infer the size of the error bars from other computational comparisons reported by Sung, 
Griffen, Fu, and Huang [1995].  The axial-force coefficients are more difficult to measure accurately 
than the other coefficients, and the experimental axial-force coefficients have 10% error bars.  On the 
other experimental coefficients (lateral force, normal force, pitching moment, rolling moment, and 
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yawing moment), 5% error bars exist.  Also, the experimental data available for all SUBOFF 
configurations reported by Roddy [1990] are asymmetric about the negative and positive angles of 
drift, especially for the axial-force coefficients.  One has to take this into account when viewing the 
comparisons of computed results with the experimental data. 

The SUBOFF barebody computation included a C-type multiblock grid with 4 blocks and 
161x73x17 (199,801) grid points per block-giving a total of 799,204 grid points.  Figure 64 shows 
how both the computations and measurements of the axial-force coefficient, lateral-force coefficient, 
and yawing-moment coefficient vary with angle of drift. The force and moment coefficients were 
computed using two different strategies for the search parameter described in the section on 
turbulence modeling.  In the first approach, an optimized search parameter was obtained for each 
angle of drift by varying its value, typically in the range of 300-1200, and taking the result which is 
in best overall agreement with the experimental data.  The other approach is to simply use a constant 
value for the search parameter (750 ) for the various angles of drift, as was done for all the other 
configurations.  All of the comparisons show excellent agreement, even though the axial-force 
measurements show considerable asymmetry.   Figure 65 shows the convergence history of these 
computations for a sample angle of drift of 10.05°.  All these coefficients have converged within 100 
multigrid cycles, and a similar convergence rate existed up to 18° angle of drift. 

Next, the research team computed forces and moments on the SUBOFF hull with the four 
stern appendages. Exploiting symmetry to generate a grid for only half of the geometry, they used a 
C-type grid with 8 blocks and 81x73x33 (195,129) grid points per block-giving a total of 1,561,032 
grid points. The grid was split into two parts in the axial direction from the bow to the leading edge 
of the fins and into four parts in the circumferential direction. No blocking was made in the radial 
direction. Each fin surface had 17 grid points in the axial direction and 33 grid points in the radial 
direction. In the first four blocks, the wall surface existed only in the radial direction; therefore, the 
algebraic turbulence model is applied in this direction only. 

Although the experimental normal force should be zero at angles of drift (if the body and 
the flow field are symmetrical), the experimental data show a small value of normal force.  The 
computed normal force is zero for all angles of drift since the flow is solved for half of the geometry 
and symmetry is assumed for the other half.  Hence, the normal force computed is not plotted against 
the experimental normal force.  Furthermore, the computed pitching and rolling moments cannot be 
compared with the available experimental data since the computed pitching and rolling moments take 
into consideration the computed normal force.  Only the results comparing the axial- and lateral-force 
coefficients and the yawing moment coefficient with the experimental data are shown for this 
configuration.  Figure 66 shows the computations of the axial-force coefficient, lateral-force 
coefficient, and yawing-moment coefficient at various angles of drift as compared with the 
experimental data.  The computed results for the axial-force coefficient lie within the error bars at 
lower angles (< 10°).  At higher angles, the results lie outside the error bars for negative angles of 
drift, but they are within the error bars for positive angles of drift.  This discrepancy is because the 
experimental data for the axial-force coefficient are not symmetrical for positive and negative angles 
of drift, while the computations assume symmetry.  As observed from the figure, the axial-force 
coefficient increases with angle of drift within the computed range of 4° to 18°.   Both the lateral- 
force and yawing-moment coefficients show good agreement with the experimental data and their 
magnitude increases with increasing angle of drift.  Figure 67 shows the convergence history of the 
various force and moment coefficients for this configuration, for a sample angle of drift of 8°.  The 
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axial-force, lateral-force, and yawing-moment coefficients converge rather quickly-typically taking 
less than 100 cycles even for angles of drift up to 18°. 

In order to investigate the influence of grid density on the accuracy of these force and 
moment computations, the team constructed two additional grids: A fine grid with 12 blocks and 
81x89x41 (295,569) grid points per block-giving a total of 3,546,828 grid points--and a coarse grid 
with 8 blocks and 41x37x17 (25,789) grid points per block-giving a total of 206,312 grid points. 
The force and moment coefficients were recomputed using these grids.  The results obtained with 
these two grids and from the previous medium fine grid can be seen in Figure 68.  Considering only 
the variation of the axial-force coefficient with angle of drift for all three grids, this figure shows that 
only slight differences exist between the fine and medium grids.  Computations using the coarse grid 
under-predict the axial-force coefficient for positive angles of drift.  The generally good agreement of 
the computed axial-force coefficient with the experimental data using the coarse grid may be because 
of the asymmetrical nature of the experimental data for positive and negative angles. The results 
obtained for the lateral-force and yawing-moment coefficient on the coarse grid show nearly as good 
agreement as the results obtained with the medium and fine grids. This agreement illustrates the point 
that the lateral-force coefficient and the yawing-moment coefficient are not as sensitive to grid density 
as the axial-force coefficient. 

Finally, the research team computed forces and moments on the SUBOFF hull with a sail. 
The C-type grid included 12 blocks and 89x73x33 (214,401) grid points per block-giving a total of 
2,572,812 grid points around the entire circumference of the body.  The grid was split into three parts 
in the'axial direction from the bow to the stern and into four parts in the circumferential direction. 
Again, no blocking was made in the radial direction.  The sail surface has 41 grid points in both the 
axial and radial directions.  Since the flow about this configuration is asymmetric about both the x-z 
and y-z planes, the grid was generated for the whole geometry under consideration.  As a result, this 
case requires more CPU time compared to the earlier configurations.  However, all three force 
coefficients and all three moment coefficients can be computed and compared with the experimental 
data. 

Figures 69 and 70 summarize the results obtained for the various force and moment 
coefficients for this configuration.  All the results show very good agreement with the experimental 
data, with the exception of the axial-force coefficient and the pitching-moment coefficient.  Perhaps 
the agreement with the axial-force coefficient could be improved using an even finer grid, as 
demonstrated in the stern-appendage case.  Figure 71 shows the convergence history of the various 
force and moment coefficients for this configuration, for a sample angle of drift of 8°.  The axial- 
force, lateral-force, and yawing-moment coefficients converge rather quickly, taking approximately 
150 time steps for this angle of drift.  Even at an angle twice this large, all force and moment 
coefficients were converged in roughly 200 time steps. 

7.7 Flapping Foil 

Except for the vortex preservation case, all of the test cases thus far have been steady-state 
computations.   Since the flow over a maneuvering vehicle is unsteady, the research team needed to 
perform validation cases in which computations using UNCLE were compared to time-dependent 
experimental data.  In one case, Sheng, Taylor, and Whitfield [1995b] compared unsteady 
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computations with measurements made by Bouard and Coutanceau [1980] for an impulsively started 
cylinder.  Another test case involved the flapping foil experiment conducted by Rice [1991], Delpero 
[1992], and Horwich-Lurie [1993].  The experiment was designed to study the flow about a 
two-dimensional hydrofoil undergoing high-reduced-frequency gust loading.  The gust was created by 
two NACA 0025 hydrofoils oscillating sinusoidally in phase, upstream of the stationary foil. 
Figure 72 shows a schematic of the experimental setup.  Experimental data were taken in the flow 
field near the stationary foil, as well as on the foil itself. 

The two-dimensional numerical computations were performed on the entire experimental 
domain, including the flapping foils.  For these multiblock computations, the entire physical domain 
was divided into 4 blocks.  Each block consists of an H-type grid comprised of 326x65 (21,190) grid 
points (giving a total of 84,760 grid points), with the minimum y+ values of approximately 1.0.  This 
particular blocking arrangement allowed the multiblock solutions to correspond exactly to a single- 
block solution, even for unsteady flow.  That is, there were no approximations at block boundary 
interfaces.  A steady-state solution was first obtained and then motion of the flapping foils was 
initiated by boundary-conforming dynamic grids that moved in pitch with the flapping foils at a 
reduced frequency of 3.62 based on the half-chord of the stationary foil.  All computations were for a 
Reynolds number of 3,780,000 (based on the stationary foil chord).  The boundary layer on the 
stationary foil (both the suction and pressure sides) was tripped at a distance of 0.105 chord length 
from the leading edge, while the boundary layer on the flapping foils and tunnel walls was treated as 
completely turbulent.  Figure 73 shows the computed velocity magnitude after five complete periods 
of motion of the two NACA 0025 hydrofoils upstream of the stationary foil.  A comparison of the 
experimental and computed pressures and velocities on the bounding box and surface of the stationary 
foil were carried out for the steady case, as well as time histories and an harmonic analysis at the 
same locations for the unsteady case. 

Taylor and his colleagues [1993] presented a complete comparison of the flapping-foil 
computations with experimental data.  However, due to space limitations, only a summary of the 
results is given here.  For the steady case, the agreement between the numerical and experimental 
bounding box data is good, and for the most part extremely good.  The agreement between the 
numerical and experimental foil surface pressure data is not as good as would be expected for this 
type problem-while the boundary layer velocity profiles on the pressure side are in good agreement, 
but not so good on the suction surface for x/c > 0.90.  For the unsteady case, the agreement for the 
bounding box varies from reasonable to excellent.  Considering the foil surface pressure data, the 
mean pressure distribution has about the same discrepancy as the steady-state case.  The amplitude is 
predicted reasonably well for both the pressure and suction sides; however, the phase is quantitatively 
not as good as the amplitude, but it is qualitatively correct.  The agreement for the mean boundary 
layer profiles is good on the pressure side and had about the same discrepancy as the steady-state case 
for the suction side.  The amplitude for both the pressure and suction sides was reasonable, as was 
the phase for the pressure side-while the phase for the suction side was quantitatively not good for 
x/c > 0.90, but qualitatively correct for all x/c. 

7.8 Prolate Spheroid (Unsteady) 

The next unsteady-flow test case returns to a geometry that more closely resembles a 
maneuvering vehicle.  As part of the same experimental research program in which Chesnakas, 
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Simpson, and Madden [1994] acquired data for a 6:1 prolate spheroid at 10° angle of attack, Hoang, 
Wetzel, and Simpson [1994a, 1994b] acquired measurements of flow about an identical 6:1 prolate 
spheroid undergoing time-dependent maneuvers.  This test case included unsteady numerical 
simulations with a vertical plunge of one foot in 0.33 seconds, a turning maneuver of approximately 
10° in 0.25 seconds about L/2, and a pitch-up maneuver of 30° in 0.33 seconds about L/2.  Hoang, 
Wetzel, and Simpson [1994a, 1994b] provided experimental surface pressure data for several axial and 
azimuthal locations. In order to compare with these measurements, the research team computed these 
prescribed maneuvers at a Reynolds number of 4,200,000 (based on total body length) using a 
111x47x61 (318,237 point) O-type grid-with an average minimum y+ value of 1.0 (for a steady, 
0° angle-of-attack case).  All unsteady computations used a steady-state solution at a = 0° as an 
initial condition.  The various maneuvers were initiated by prescribing a trajectory for the boundary- 
conforming dynamic grid.  Minimum time stepping, as well as three Newton iterations and five 
symmetric Gauss-Seidel passes per time step, were used to insure time accuracy in the computations. 
Figure 74 shows a schematic of the plunge, turning, and pitch-up maneuvers. 

Measurements for the plunge maneuver were made at various axial locations and at vertical 
displacements of six and twelve inches. The twelve-inch displacement occurred in 0.33 seconds, so 
the constant nondimensional plunge rate based on the freestream velocity was 0.02. Figure 75 shows 
the comparison between the computed and experimental surface pressure distributions for the six- and 
twelve-inch locations.  The experimental data indicate that this motion seems to have little effect on 
the surface-pressure distribution, except at the bow and stern.  Hoang, Wetzel, and Simpson [1994b] 
reported that the unsteadiness in the pressure distribution in these regions would produce a pitch-up 
moment.   Inspection of the computed results on an exaggerated scale also confirm this to be the case; 
however, the magnitude of the computed pressure differential at the bow, as the maneuver is 
performed, is not as large as that shown in the experimental data. 

In order to perform the turning maneuver, the relationship between the yaw angle and 
nondimensional time must be known.  This information was obtained directly from the experiment 
itself.  Figure 76 presents the computed and experimental values of surface-pressure coefficient for 
every two degrees of motion.  The agreement is considered good, with the largest differences being 
toward the windward side at the forward axial stations for the first eight degrees of motion and at the 
suction peaks at ten degrees.  However, a comparison on a considerably expanded scale with the 
steady case at ten degrees and x/L = 0.56 indicates that the suction peaks for the turning maneuver 
are greater than those for the steady case and that the location of the minimum pressure is shifted 
leeward by approximately twenty degrees, just as in the experimental data. 

The motion of the prolate spheroid for the pitch-up maneuver was initiated by a solid body 
rotation of the entire grid about the L/2 position of the geometry.  The 30° pitch-up was performed in 
0.33 seconds, so the nondimensional pitch rate based on the freestream velocity was 0.047.  A 
constant pitch rate was used instead of a prescribed trajectory since there was only a slight variance in 
the experimental rate for the entire motion.  The computed and experimental surface pressures for 
each 5° of the pitch-up maneuver are shown in Figure 77.  At axial locations of greater than x/L = 
0.44 and incidence angles greater than 15°, the pressure variation on the leeward side of the model 
indicates the presence of the leeward vortices.  The largest discrepancies between the computations 
and the experiment occur in these regions, as well as near the windward side for 30° angle of attack. 
The algebraic turbulence model used in these computations does not exactly predict the location and 
magnitude of the suction peaks in the pressure profiles; however, the overall agreement and trend of 
the computed results compares favorably with the experimental data.  Once again, a comparison with 
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a steady case at 30° angle of attack indicates that the behavior of the pressure distribution is similar to 
that of the turning maneuver in that the suction peaks for the pitch-up maneuver are greater than those 
for the steady case and the location of the minimum pressure is shifted leeward by approximately 5°. 
In addition, the location of the primary separation is also displaced by approximately the same 
amount.  The shift in the computed results for these quantities is less than 5° and the position of the 
minimum pressure is almost the same for both the steady and pitch-up maneuver at 30°. 

Overall, the comparison with experimental data is favorable even though there are some 
discrepancies for all of the maneuvers considered, mainly at higher angles of attack.  Also, the 
comparison with available steady data at selected angles of attack demonstrates that the differences in 
the steady and unsteady data have been captured.  Clearly, quasi-steady solutions would not be 
adequate to simulate these unsteady maneuvers. 

7.9 SUBOFF with a Body-Force Propeller Model 

Unfortunately, no experimental data is available for a propelled SUBOFF configuration. 
However, as a precursor to a fully-appended SUBOFF calculation in which the fluid and vehicle 
dynamics are coupled together, the research team computed two prescribed maneuvers using a body- 
force model for the propeller.  First, the team computed a pure pitch-up maneuver, with an angle of 
attack up to 15° and a dimensional pitch rate of 10° per second.  Second, the team computed a 
prescribed maneuver that include pitch, yaw, and roll, with the maximum values for the angle of 
attack, drift, and roll being 15°, 5°, and 5°, respectively.  Both of these test cases included the fully- 
appended SUBOFF vehicle with a sail, four stern appendages, and a sail plane (a sail plane fabricated 
by this research team and not by the original SUBOFF designers).  Inputs to the body-force propeller 
model came from propeller characteristics given by Yang, Hartwich, and Sundram [1990]. 

The grid for this fully-appended SUBOFF vehicle was composed of equal dimensioned 
blocks.   For the pitch-up case, symmetry was used and resulted in an 18-block, 734,706-point grid 
for one half of the geometry.  The pitch, yaw, and roll computation required the complete geometry, 
which meant that 36 blocks and 1,469,412 points were used.  The Reynolds number for both 
computations was 12,000,000 (based on body length), and the body-force propeller model was located 
at x/L = 0.978.  As in the previous cases, the grid lines were clustered to solid surfaces in such a 
manner that the resulting y+ values for the first cell off the surface were about 1.0. 

Each of the prescribed maneuvers used a steady-state solution as the initial condition. 
Figure 78 shows the surface of the vehicle with contours of pressure, as well as contours of axial 
velocity on the body-force propeller plane.  On the plane of symmetry, Figure 79 shows contours of 
the w-component of velocity for the same steady-state solution.  Using this initial condition, the 
prescribed 15° pitch-up maneuver resulted in the u velocities shown in Figure 80 for the starting, 
half-way, and ending points of the maneuver.  Figure 81 shows the same snapshots of the 
«-component of velocity for the prescribed 15° pitch, 5° yaw, and 5° roll maneuver.  The effect of 
the maneuvers on the body-force propeller and the sail-plane wakes are evident in all of these contour 
plots. 
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7.10 Freestream Propeller 

During a maneuver, a vehicle's propulsor ingests a nonuniform flow and generates forces 
in the horizontal or vertical planes-which, in turn, create a moment on the vehicle that can greatly 
affect its maneuvering characteristics.  Therefore, for many cases, a body-force representation of the 
propulsor will prove to be inadequate, and the physics-based prediction method will have to include 
the actual propulsor with its rotating blades.  As a first case to test the capability of the UNCLE code 
to handle rotating blades, the research team simulated the flow through the marine Propeller 4119 
tested in a uniform freestream by Jessup [1989].  This freestream propeller provided the first 
application of the unsteady multigrid multiblock code. 

For this numerical simulation, the computational grid consists of three blocks with a total 
of 279,825 points, as shown in Figure 82.  The surface grids on both the streamwise and spanwise 
direction of the blade contain 41 points. The Reynolds number is 576,000, based on the freestream 
velocity and the diameter of the blades. The initial solution of the unsteady flow was obtained by 
running the unsteady code using local time stepping for the flow field, while the computational grid 
was rotated a minimum time step corresponding to a rate of 200 cycles per revolution of the 
propeller.  After 200 time steps, the time-accurate calculation was started using a minimum time step 
of 0.004165, which is equivalent to 200 time steps per revolution.  Multigrid cycles are employed to 
ensure the convergence of the solution at each time step.  Figure 83 shows computed «-velocity 
contours obtained with different numbers of multigrid cycles.  It was found that the final solution with 
one multigrid cycle at each time step is close to that with two multigrid cycles at each time step. 
Next, Figure 84 gives the pressure coefficient distributions on the blade surface, where r is the radial 
distance from the measured point on the blade to the hull axis, and R is the radius of the blade tip. 
Favorable agreement was obtained between the computation and experiment, except for the location 
r/R = 0.3.  Also, Figure 84 shows good agreement between the experimental and computational 
results for both the thrust and torque coefficients. 

7.11  SUBOFF with a Rotating Propeller 

Having computed the flow through a freestream propeller, the research team next selected 
an appended SUBOFF configuration with a rotating propeller in order to test the unsteady multigrid, 
multiblock code for its dynamic relative motion grid capability, as well as its efficiency and 
robustness to simulate complex unsteady flows.  However, as noted previously, no experimental data 
is available for a propelled SUBOFF configuration.  Therefore, the team first needed to select an 
open propeller for these SUBOFF computations. 

Although a propeller could have been designed specifically for this application, this 
approach provides little opportunity for performing diagnostic calculations in the event that unrealistic 
predictions were developed by the body/propeller flow calculations.  Therefore a "stock" open 
propeller was selected for this application.  The principal criteria used in selecting a propeller was 
that sufficient performance data be presently available to (1) allow accurate sizing of the propeller for 
the SUBOFF body and (2) provide for diagnostic "propeller-only" calculations to help assess the 
accuracy of propeller flow predictions.   Boswell [1971] and Nelka [1974] have evaluated a skewed 
propeller series in several experimental facilities and extensively documented the performance.   Since 
these propellers form a systematic series and have been shown to have uniform open-water powering 
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performance, they provide an opportunity to examine the effects of a few primary propeller design 
variables, especially skew, on maneuvering performance. 

Three propellers from the series were chosen as candidates for this application.  These 
included Propeller 4381 (no skew), Propeller 4497 (36° warp), and Propeller 4498 (72° warp). 
Propeller sizing was done on the basis of SUBOFF body resistance data provided by Crook [1990]. 
The relatively close agreement of open-water data among these three propellers allowed a common 
diameter to be chosen for this application.  This was chosen so as to allow the propeller to operate at 
the effective advance ratio for peak open-water efficiency in the behind condition for the design hull 
resistance.  The final diameter chosen was 10.5 inches for the 20-inch diameter SUBOFF body. 
After selection of a diameter, IGES NURBS spline surfaces were generated for the blade surfaces, 
and these surfaces were used for generating grids in the final flow solutions. 

As shown in Figure 85, the geometry consists of the SUBOFF hull, a sail, four stern 
appendages, and a rotating propeller with five blades.  For this computation and all subsequent 
computations on SUBOFF with a propeller, the team selected Propeller 4381 (no skew).  The grid 
contained 13 blocks and had 1,153,901 points.  The localized grid distortion technique mentioned 
previously was used to treat the relative motion between the SUBOFF body grid and the rotating 
propulsor grid.  Three levels of multigrid with full coarsening were used to ensure that the solution 
converged at each time step.  At each time step, only one multigrid cycle and one Newton iteration 
was implemented.  The computation was first carried out using local time stepping—while rotating the 
propeller grid for two revolutions (240 time steps)~and, then, switching to minimum time stepping 
for the true time-dependent simulation.  The minimum time step used was 0.0005087, which is about 
160 time steps per revolution.  Figure 86 shows that a periodic flow field in the region of the rotating 
blades is obtained after a total of five to six revolutions of the propeller (720 — 880 time iterations). 
Alternatively, Figure 87 shows that a periodic solution is achieved in about 2200 time iterations, if 
the calculation is performed using only minimum time stepping (320 time steps per revolution) from 
the beginning of the computation.  This indicates that using local time stepping in the beginning of the 
computation can significantly improve the convergence of the solution process, since the wake behind 
the sail is developed more quickly than using minimum time stepping.  Special attention should be 
paid to the pattern of the periodicity. One peak differs from the other three because the wake from the 
top fin mixes with the wake from the sail, so that the propeller blades encounter a different upstream 
wake as they pass the top fin position. 

Figure 88 shows contour lines of axial velocity in the propeller region.  The continuity of 
the contour lines across the interface not only indicates the proper treatment of data communication 
between the moving blocks but also serves to demonstrate the unsteady interaction between the 
appendage wakes and the propeller blades. 

The research team performed similar computations for a fully-configured geometry, after 
adding fabricated sail planes to the previous appended SUBOFF geometry~the same sail planes used 
for the SUBOFF computations with a body-force propeller model.  The addition of these sail planes 
resulted in the development of a radial blocking scheme.  The final grid included 51 blocks and 
1,642,659 grid points.   Figure 89 shows the geometry and a portion of the grid, while Figure 90 
displays the surface-pressure distribution for the periodic solution. 
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7.12  High Reynolds Number Pump 

As stated previously, the action of the propulsor will greatly affect the maneuvering 
characteristics of a vehicle.  Thus far, the results have shown how well the UNCLE code can 
compute the flow through open propellers, operating both in a freestream flow and on the stern of a 
vehicle.  However, Wislicenus [1960], for example, showed that submerged vehicles can operate with 
a ducted propulsor with more than one blade row, using both rotating and stationary blades.  He 
described these propulsors as "propulsion pumps" or "pumpjets" and it is widely known that these 
types of propulsors have been used on torpedoes and other types of unmanned undersea vehicles.  In 
order to verify how well the UNCLE code can compute this type of flow field, one can compare 
numerical computations with experimental data acquired within an axial-flow pump.  In performing an 
experiment to obtain precisely this type of code validation data, Zierke, Straka, and 
Taylor [1993,1995] utilized the high Reynolds number pump (HIREP) facility at the Applied Research 
Laboratory of The Pennsylvania State University. 

HIREP consists of a pump stage driven by a downstream turbine. The pump and turbine 
rotor blades rotate together on a common shaft in the test section of the 48-inch diameter Garfield 
Thomas Water Tunnel, such that the main drive impeller of the tunnel overcomes the energy loss 
within HIREP.    Zierke, Straka, and Taylor [1993,1995] acquired all of the data in the pump stage, 
which includes a row of 13 inlet guide vanes, a row of 7 rotating blades, and three downstream 
support struts.  The experimental techniques included flow visualization, static-pressure 
measurements, laser Doppler velocimetry, and both slow- and fast-response pressure probes. 
Subsequent to these measurements, Weyer [1995] acquired unsteady static-pressure measurements on 
inlet guide vanes and on rotor blades. 

Recently, Dreyer and Zierke [1994], Yang [1994], and Lee, Hah, and Loellbach [1996] all 
performed numerical analyses of HIREP using a variety of RANS codes.  However, all of these 
three-dimensional simulations were performed as steady-state computations.  Dreyer and Zierke 
[1994] accounted for the effects of one blade row on another using the average-passage equations 
originally developed by Adamczyk [1985], while Lee, Hah, and Loellbach [1996] used the mixing- 
plane approach.  Yang [1994] treated the blade rows independently.  For this maneuvering program, 
the research team performed a time-dependent computation using the unsteady UNCLE code, 
including the use of periodic boundary conditions. 

In order to reduce the computational time and storage, the team modeled the 13:7 blade 
count (ratio of inlet guide vanes to rotor blades) with a 14:7 blade count, which allowed for a 2:1 
computational blade count.  Figure 91 shows the HIREP geometry and the corresponding 
computational grid.  The computational geometry used a constant hub upstream of the inlet guide 
vane instead of the actual inlet used in the experiment, which included a nose, the tunnel walls, and a 
tunnel liner.  The computational grid consists of three blocks-one for each inlet guide vane (IGV) 
passage and one for the rotor blade passage.  Each IGV block had 89x49x33 (143,913) grid points, 
while the rotor block had 89x49x65 (283,465) grid points-for a total of 571,291 points.  Great care 
was taken in the gridding process to maintain the fillets and rounded tip on the pressure surface of the 
rotor blades.  Figure 91d displays the fillets, tip gridding, and the interface region between the two 
blade rows. 
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Computations for HIREP were run on various platforms~a Cray YMP, an SGI R8000, and 
an SGI R10000.  These final results computed on an SGI R10000 using two time steps per click, no 
Newton subiterations, and one multigrid cycle.  It takes approximately two revolutions to reach this 
periodic state, requiring about 98 CPU hours on the SGI R10000 (0.000345 seconds/grid point/time 
step).  No-slip boundary conditions were used on all solid surfaces.  The uniform inlet core flow was 
used with endwall boundary layers based on a 1/7-power-law velocity profile, while characteristic 
variable boundary conditions were used for the outflow. 

7.12.1 IGV Flow Field 

Figure 92 presents the static-pressure distribution on the inlet guide vanes.  Both the 
measured and computed values are the time-averaged pressures on the blade.  The measured and 
computed distributions in this figure compare quite favorably, which indicates that the simulation 
gives the proper vane loading and subsequent flow turning before entering the rotor blades.  To 
model transition, the computed solution is "tripped" at 18 percent chord on both the suction and 
pressure surfaces. 

The velocity distribution is presented in Figure 93, along with a schematic of the geometry 
that shows the location of the measurement plane (represented by a line between the two blade rows). 
The circumferentially-averaged velocities in Figure 93a again show that the computations of the flow 
turning compare very well with the measurements, as shown by the agreement in the plot of Ve.  The 
agreement between the computed and measured axial velocities is very good.  Figure 93b shows the 
circumferential variation of all three components of the velocity (over two IGV pitches).  While the 
computed and measured values of the tangential and radial velocity profiles compare quiet favorably, 
the predicted axial-velocity wakes are wider and deeper than the measured wakes.  Two reasons may 
explain this discrepancy.  First, the finite measurement volume of the five-hole pressure probes used 
in the experiment will lead to some spatial averaging and result in measured wakes that are too 
shallow.  Second, the grid used for the computations may be too coarse downstream of the inlet guide 
vanes. 

7.12.2 Rotor Blade Flow Field 

Similar to Figure 92 for the inlet guide vanes, Figure 94 presents the static-pressure 
distribution on the rotor blades.  The computed results compare quite well with the measured data, 
with just a slight overprediction of the suction side pressure near the leading edge.  The computed 
solution is "tripped" at 10 percent chord on the suction surface of the rotor and at the leading edge on 
the pressure surface. 

Figure 95 shows the observed experimental skin-friction lines and the computed surface 
particle traces on the suction side of a rotor blade.  Both the measurements and the computations 
show the same overall two-dimensional behavior of the flow in the midspan region.  The predictions 
also capture the experimentally observed corner separation near the hub; however, it appears that the 
predicted corner separation and the predicted outboard separation along the trailing edge occur closer 
to the trailing edge than those viewed in the experiment.  Since the trailing-edge pressure distributions 
shown in Figure 94 compare so well, it is believed that the difference in the locations of the 
separation regions may be due to the three-dimensionality of the view in Figure 95b. 
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Figure 96 presents the velocity profiles downstream of the rotor blades, along with the 
axial location of the measurement plane.  Unlike the velocity measurements downstream of the inlet 
guide vanes that were acquired with five-hole pressure probes (see Figure 93), the velocity 
measurements in Figure 96 were acquired using a two-component laser Doppler velocimeter.  Thus, 
only the axial and tangential components of the velocity were measured.  The comparisons of the 
circumferentially-averaged velocity components are shown in Figure 96a.  The good agreement 
between the computed and measured axial velocity indicates that the computations maintained the 
proper mass flow rate through the rotor.  The rotor blades were designed to remove the swirl 
imparted to the flow by the inlet guide vanes, except near the hub where the rotor blades provided 
additional turning.  The experimental values of the tangential velocity show this design intent, with 
negligible tangential velocity over most of the span and a small amount of tangential velocity near the 
hub.  Meanwhile, the simulation indicates that the rotor blades have overturned the flow, resulting a 
negative values of the tangential velocity across the span. The computed pressure distribution at 90% 
span in Figure 94 shows more loading than the measurements near midchord, which is consistent with 
overturning of the flow.  Near the leading edge, however, the computations show less loading than 
the measurements, which indicates underturning. 

Figure 96b shows the circumferential variation of the axial and tangential velocities at 
various spanwise locations.  The agreement between the computed and measured data is reasonable in 
the midspan region.  Near the hub, the computed wakes have the correct depth, but they are slightly 
wider than the measured wakes.  Near the shroud, the computed wakes are very shallow.  This 
discrepency in wake depth could be due to poor gridding in this region and the influence of the tip 
leakage vortex. 

One important point should be noted. The computed data is collected in the same manner 
as the measured data. That is, a "probe" is inserted into the flow field at a given circumferential 
location. Data is then extracted from the computed solution at that location as the rotor block sweeps 
past the "probe." Thus, the circumferential variation of the velocity can also be thought of as a time 
history of the velocity, as opposed to a spatial variation of the velocity. Although this difference may 
seem subtle, it is the fundamental difference between the solutions obtained by a time-dependent code 
and a steady-state code. 

Presenting the velocities of Figure 96 in a different manner, Figure 97 presents contour 
plots of the axial and tangential velocity, both for the measurements and for the computations.  The 
contours show both the skewed wakes exiting the rotor blades and the vortical structures shed from 
the blade tips.   For the experimental data near midspan,  Zierke, Straka, and Taylor [1993] showed 
that the spanwise varying contours within the rotor blade wakes occur from coarsely-spaced, discrete 
measurement locations.  These spanwise varying contours do not indicate any physical phenomenon. 
The computations show similar spanwise varying contours because of the coarseness of the grid well 
away from the solid surfaces. 

7.13  Moving Appendages 

Recall that a maneuver of an underwater vehicle is defined as a controlled change or 
retention of the heading or speed.  While changes in the angular velocity of the propulsor or changes 
in ballast provide some control over the maneuver, the primary control mechanism is changing the 
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settings of various appendages.  Therefore, a physics-based means of predicting a vehicle maneuver 
must include the capability of handling moving appendages. 

Previous test cases have focused on either stationary appendages or appendages that rotate, 
as in the case of the rotating blades of the propulsor.  This test case focuses on the computational 
capability to dynamically change the settings of an appendage.  Towards this end, the research team 
created a geometry where a SUBOFF stern appendage stands on a flat plate.  Figure 98 shows this 
setup, where a small gap exists between the bottom of the appendage and the plate in order to allow 
for movement of the appendage.  The vertical distance between the plate and the bottom of the 
appendge was approximately 5% of the total span of the appendage.  Here, the appendage motion is 
accomplished by performing a solid body rotation of the appendage about the quarter-chord location, 
while the grid about and underneath the appendage was allowed to distort to follow the motion. 
These computations with UNCLE used a Reynolds number of 12,000,000 (based on the length of the 
plate) and the total number of grid points for this configuration was 366,439-with 25 grid points 
running axially through the gap region and 13 points running radially across the gap. 

For this initial moving-appendage test case, the appendage was rotated in a time-accurate 
manner to a total deflection of 10°.  The constant rate of rotation was 10° in 0.2 seconds.  Similar to 
previous test cases, this unsteady motion used a steady-state solution for the configuration at 0° of 
deflection as an initial condition.  The movement of the appendage was then initiated through the use 
of a dynamic grid and allowed to continue to a final deflection of 10°.  Figure 99 shows a snapshot in 
time at 10° of deflection, showing the axial component of velocity around and under the appendage. 
Looking closer at the flow field at this same instance of time, up towards the bottom surface of the 
appendage, Figure 100 displays particle traces that indicate a migration of the fluid under the gap~ 
from the "pressure" surface to the "suction" surface~and a roll-up into a root leakage vortex.  In 
situations where an appendage lies on a vehicle hull, this root leakage vortex could interact with 
downstream surfaces, such as the vehicle propulsor. 

55 



8.  Results Using Parallel Processing 

In the previous section, the research team started with test cases that used few grid points 
and moved toward test cases that used a large number of grid points.  Real maneuvering vehicle 
predictions will require even more grid points (on the order of 5,000,000 to perhaps even 10,000,000 
points), as well as an enormous amount of CPU time using the baseline UNCLE code.  In an effort to 
reduce the run time of these large computations, the team utilized the parallel version of UNCLE to 
compute the flow over the fully-appended SUBOFF body, with and without a rotating propeller. 

The overall objective of the parallel computing effort in this study has been to develop a 
portable, scalable parallel capability that would allow one to perform these large-scale maneuvering 
simulations and to reduce their run times. This effort included the development of a suitable 
adaptation of the RANS solution algorithm, based on a block-decoupled subiteration, and the 
development of a parallel version of the UNCLE code. The parallel code was designed and 
constructed in a modular form that maintains as much familiarity as possible to developers of the 
single-processor code. A high degree of portability has been achieved across different computing 
platforms through the use of the MPI message-passing library, which is widely available and rapidly 
becoming a defacto standard. The parallel code has been routinely used on the IBM SP-1 and SP-2, 
the SGI Power Challenge, Sun and SGI workstations, and the Super MSPARC~a testbed of 32 
processors with hybrid performance monitoring capabilities constructed by the Engineering Research 
Center at Mississippi State University.  No effort has yet been made to tune these calculations to the 
machines, other than the selection of compiler optimization options. 

The parallel development initially focused on a simple, unappended hull requiring only a 
single-block grid of 13,362 points.  The parallel code was then extended to include capabilities 
developed in the evolving single-processor code, including capabilities for multiblock grids, MUSCL 
fluxes, general turbulent stresses, a multigrid solution algorithm, and unsteady flow with a rotating 
propulsor.  These capabilities were demonstrated and validated on some of the same flow cases 
evaluated with the single-processor code, by comparing with both experiments and computed results 
obtained with the single-processor code.  The configurations tested included the SUBOFF 
hull/sail/stern-appendage configuration with and without a propeller.  The parallel code was also used 
to compute many of the sequence of cases used to validate the prediction of axial force, lateral force, 
and yawing moment coefficients by comparison with measurements. 

The run times for various parallel cases are summarized in Tables 3 through 6.  Table 3 
gives results the for steady flow past a hull/sail/stern-appendage configuration requiring about 
600,000 grid points.  Although the three different computers used in these calculations have widely 
different performance, in each case there is good parallel efficiency as indicated by CPU utilizations 
of 92%, 72%, and 85%.  Table 4 gives timing results for the IBM SP-2 (wide nodes) for a similar 
configuration, but including sail planes.  These two cases (for resolutions of about 600,000 and 
3,300,000 grid points) illustrate the scalability of the present approach.  Good parallel efficiency is 
obtained in each case by using the heuristic performance estimate (compared with Figures 6 and 7) to 
match each flow case to the computing resources used. 

The parallel code (with the multigrid algorithm) was used for production running of 
validation cases for axial force, lateral force, and yawing moment coefficients—with Table 5 giving 
run time comparisons.  A considerable reduction in run time was realized through parallel computing. 
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Although the parallel and sequential algorithms are somewhat different, their convergence behavior is 
very similar, as illustrated for this case in Figure 101.  Finally, the propulsor capability of the parallel 
code is demonstrated by a re-computation for a SUBOFF hull with rotating propeller, using about 
360,000 grid points.  Table 6 shows that good efficiency (74%) was achieved, despite a 19% load 
imbalance due to unequal grid block sizes.  This load imbalance could be reduced considerably by a 
relatively minor re-partitioning of the grid. 

Table 3.  SUBOFF Hull with a Sail and Four Stern Appendages 
(Re= 12,000,000, 600,000 Grid Points, and 500 Steps) 

Machine Processors Memory Run Time CPU % Mflops 

Parallel Code without Multigrid 

SGI R8000 12 12 x 101 Mb 6 Hours 92% 84 

SP-1 12 12 x 101 Mb 6 Hours 72% 84 

SP-2 12 12 x 101 Mb 0.66 Hours 85% 480 

Table 4.  SUBOFF Hull with a Sail, Sail Planes, and Four Stern Appendages 
(Re= 12,000,000 and 500 Steps) 

Machine Processors Memory Run Time CPU % Mflops 

600,000 Grid Points 

SP-2 12 40 Minutes 85% 480 

3,300,000 Grid Points 

SP-2 32 80 Minutes 81% 1,200 

57 



Table 5.  SUBOFF Barebody 
(Re = 12,000,000, 18.115° Incidence, 800,000 Grid Points, and 200 Steps) 

Machine Processors Memory Run Time CPU % Mflops 

Sequential Code: Vertical Multigrid 

IBM-590 1 400 Mb ~ 12 Hours 100% 

SGI R8000 1 400 Mb -24 Hours 100% 

Parallel Code: Horizontal Multigrid 

SP-2 8 8 x 200 Mb 1.55 Hours 

SP-2 16 16 x 100 Mb 0.85 Hours 

SGI R10000 8 8 x 200 Mb 2.28 Hours 94% 

S-Msparc 16 16 x 100 Mb 4.43 Hours 

Table 6.  SUBOFF Hull with a Rotating Propeller 
(Re = 12,000,000, 0° Incidence, 360,000 Grid Points, and 1 Revolution = 160 Steps) 

Machine Processors Memory Run Time CPU % Mflops 

Sequential Code without Multigrid 

IBM-590 1 4.00 Hours 100% 

Parallel Code without Multigrid 
(Note: This Decomposition has a 19% Load Imbalance) 

SP-2 15 0.47 Hours 74% 

The overall impact of the parallel capability developed and demonstrated here is that it 
enables the solution of problems too large or computationally intensive for solution using a single 
processor, and it can also reduce the run time to achieve timely turn-around of solutions needed in a 
design environment. 
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9.  Results Using Two-Equation Turbulence Models 

The two-equation q-oo turbulence model, as described previously, was implemented directly 
into the UNCLE flow solver and tested with and without the nonlinear model for a range of validation 
cases. The specifics of these tests and the results are given in this section.  Included are both very 
fundamental problems to test the integrity of the coding, as well as more relevant problems which 
begin to show the capability to make maneuvering predictions for underwater vehicles. 

9.1  Turbulence Decay 

The first step in analyzing any computational model is to verify the integrity of the 
computer code.  In this respect, the decay of turbulence is probably the single most attractive problem 
for the validation of two-equation turbulence models for two reasons.  First, the problem can be 
described with a single, independent variable—either time or a single spatial coordinate.  Second, the 
physics of the flow are governed by only a small number of the terms in the model, providing an 
easily obtained analytical solution with which the numerical results may be compared. 

The spatial decay of turbulence is often referred to as the decay of grid-generated 
turbulence.  In this case, a uniform mean flow passes through a fine, turbulence-generating grid. 
Sufficiently far downstream, the flow is governed by a balance between convection and dissipation 
only.  This will be the case, for instance, downstream of a turbulence-generating appendage on a 
maneuvering vehicle.  In the absence of any velocity gradients, an analytical solution to Equations 9 
and 11 is attainable and can be written as 

(o q 
a) =         and        ~ - ' 

where C2 is the empirical constant from the q-w model, / is the transit time of a particle, and the 
subscript i denotes the initial value of the turbulence. 

The temporal decay of turbulence can be isolated by stirring fluid in a large container. 
After a period of time, the mean flow decreases to zero, and the remaining turbulence dissipates over 
time.  In this case, the two-equation model simplifies to a balance between the unsteady term and the 
dissipation term.  The analytical solution has the same form as that for the spatial decay listed 
previously, but with the independent variable t now denoting time. 

The turbulence decay problems were solved using the UNCLE flow solver with the q-w 
turbulence model in two different ways.  To model spatial decay, which checks the convection and 
dissipation terms within the code, 100 cubic control volumes were aligned in a row in the x-direction 
and symmetry was enforced in both the y- and z-directions.  Initial values at the inlet were fixed as 
u = 1, v = w = 0, qt■ = 0.01, and o>,  = 0.10.  A CFL number of 10 was used, and the turbulence 
solution converged quickly to its single precision limit.   Figure 102 shows that the spatial decay of q 
and a) match the analytical solutions very closely, demonstrating that the convection and dissipation 
terms in the q and u equations are coded properly. 
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The unsteady decay of homogeneous turbulence was solved using a single cubic control 
volume with zero average velocity and symmetry boundary conditions in all directions.  Arbitrary 
levels of initial turbulence were specified as qi = 0.006 and w, = 0.05.  The resulting decay of the 
turbulence was solved in a time-accurate manner using time step sizes which varied from 0.01 to 1.0. 
Just like the case for spatial decay, Figure 103 shows that the time decay of q and co match the 
analytical decay very closely, demonstrating that the unsteady term was coded properly. 

9.2 Fully-Developed Channel Flow (Linear Model) 

Two terms from the turbulence model—namely, the diffusion and production terms—were 
absent in the calculations of turbulence decay and needed to be tested.  Steady, fully-developed, two- 
dimensional channel flow provides an excellent opportunity to study these effects for several reasons. 
First, this flow eliminates convective and unsteady effects, which have already been inspected in the 
previous calculations.  Next, researchers have studied this flow extensively and have established 
empirical and analytical curves for each of the dependent variables.  Finally, the effect of a solid, 
turbulence-producing boundary is introduced, which will be a characteristic feature of the 
maneuvering vehicle predictions. 

Fully-developed channel flow was modeled on a 10x49x 2 grid (980 points) in the 
streamwise, normal, and spanwise directions, respectively.  Symmetry was enforced in the normal 
direction so that the solution only spanned half of the channel height.  The solution was integrated all 
the way to the wall, where the grid was clustered.  The streamwise and spanwise spacings were each 
constant and equal to 1 % of the channel height.  Inlet profiles were copied from the exit at each 
iteration for all variables except pressure, which was linearly extrapolated from the interior nodes. 
Characteristic variable boundary conditions were used at the exit, and the exit pressure was specified 
as constant.  The Reynolds number was 150,000 based on the bulk velocity of the fluid and the 
channel height.  The convergence rate is especially poor for this case since errors which would 
normally be allowed to pass through the exit boundary are now being re-introduced at the inlet.  For 
this reason, the CFL number was ramped gradually from 0.1 to 1000 once the solution had been 
started with the modified Baldwin-Lomax turbulence model. 

The solution was compared to well-established profiles in the near-wall region for u+, q+, 
and w+ versus the normalized wall distance y+ .  In all three comparisons, a log-linear scale is used, 
with y+ on the logarithmic scale to magnify the various turbulence layers.  As usual, the viscous 
sublayer is the region below y+ = 10 where the viscous or "laminar" shear stress dominates and 
turbulence production is negligible, and the "log-layer" is the region beyond y+ = 30 or so where 
turbulence production dominates.  In this latter region, the turbulence is roughly in "equilibrium," 
since diffusion is negligible, leaving production and dissipation nearly equal. 

These physical considerations can be used in deriving analytical expressions for u, q, and 
a) in the near-wall regions.   Figures 104 and 105 shows comparisons of these expressions with the 
numerical solutions.  Clearly, the numerical solution matches the analytical expressions very closely, 
indicating that the diffusion and production terms have been coded properly. 
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9.3  Fully-Developed Channel Flow (Nonlinear Model) 

As stated previously, the traditional form of the two-equation turbulence models makes it 
impossible to predict any significant anisotropy of the normal Reynolds stresses.  The nonlinear model 
addresses this problem.  Fully-developed two-dimensional channel flow provides an excellent 
opportunity to test the construction and coding of the nonlinear model.  Analytically, one can show 
that the nonlinear model only modifies the normal Reynolds stresses in this case, but not the Reynolds 
shear stresses.  One can also show that only the Reynolds shear stresses are coupled to the flow.  As 
a result, the addition of the nonlinear effects should achieve the same answer as was obtained with the 
linear model, but with an improved prediction of the normal Reynolds stresses. 

The case of two-dimensional fully-developed channel flow, subject to all of the 
specifications listed in the previous discussion, was repeated using the nonlinear q-w model with the 
constants of Myong and Kasagi [1990].  Figure 106 shows the improved prediction of the average 
velocity fluctuations compared to the experimental data of Laufer [1950].  It is important to remember 
that the linear model can only predict the three components to be equal everywhere; however, the 
nonlinear model clearly gives the desired anisotropy.  Figure 107 shows that the shear stress is linear 
throughout most of the domain in accordance with the governing equations and has a slope which is 
proportional to the pressure gradient. 

The nonlinear form of the q-u> turbulence model was next applied in solving for the flow 
through a three-dimensional square duct.  This case is well-suited in validating the nonlinear model 
for application to appended vehicles.  Primarily, the presence of secondary flow in a fully-developed, 
non-circular duct is due entirely to anisotropy, or differences in the normal Reynolds stresses.  Thus, 
the linear model is completely incapable of predicting any secondary flow, but the nonlinear model 
should provide a reasonable prediction.  This ability of the turbulence model may be an important 
enhancement in the prediction of juncture flows, as described by Chen [1995].  Chen [1995] showed 
that a nonlinear model was necessary to properly predict the formation of a primary and secondary 
horseshoe vortex in an appendage-hull junction flow. 

The q-w model was applied using 3x100 xlOO grid points (30,000 total) in the streamwise, 
spanwise, and normal directions, respectively, and at a Reynolds number of 150,000.  In order to 
achieve fully-developed flow, the inlet flow profiles were copied from the exit after each iteration for 
every variable except pressure, which was linearly extrapolated from the interior nodes. 
Characteristic variable boundary conditions were applied at the exit, and symmetry was applied at two 
boundaries so that only a quarter of the square duct needed to be solved.  The model was applied with 
both the linear and nonlinear models.  While secondary flow was absent in the former case, a distinct 
pattern of secondary flow emerged in the latter case with a behavior which qualitatively matches that 
seen in experiments.  Again, convergence for this case is quite slow since errors which would 
normally be convected through the exit are re-introduced at the inlet.  In fact, compared to 
experiments, the magnitude of the secondary velocities is too small, and so the results are not 
complete. 

Previously, a solution for the same flow was obtained using the stand-alone form of the 
nonlinear k-e model.   In this case, the secondary flow profiles could be directly compared to the 
experimental data of Gessner and Jones [1965].  The results, shown in Figure 108, confirm that the 
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nonlinear model was well-suited for the prediction of turbulence-driven secondary flow, as both the 
magnitude and shape of the secondary profiles compare well with the experimental data. 

9.4 Flat-Plate Boundary Layers 

Although the fully-developed channel flows have helped to verify that the traditional q-u 
turbulence model and nonlinear terms have been coded correctly, they describe internal fully- 
developed flows which differ substantially from the developing and sometimes transitioning external 
flows that occur during vehicle maneuvers. 

To test the prediction of external boundary layer development, the two-dimensional flow 
over a flat plate was modeled.  Again, a single spanwise control volume and symmetry conditions on 
both spanwise boundaries were employed.  The grid size in the x-y plane was 117x39 (4,563 points) 
and was four times as long as it was high. A constant grid-expansion ratio of 1.2 was used normal to 
the solid surface. Characteristic variable boundary conditions were enforced on the top and exit of 
the domain, where pressure was constant. The Reynolds number based on the domain height and 
freestream velocity was 1,000,000, so that the maximum Reynolds number based on x was 
4,000,000.    Freestream values given as q = 0.006 and w = 0.05, which are representative values in 
ordinary wind tunnel tests.  A uniform inlet velocity profile was specified at the start of the plate; this 
is something of a contradiction and causes a large pressure spike at the leading edge of the flat plate. 
The two-equation model was "cold-started" with a CFL number which was ramped from 0.1 to 1000 
over the course of convergence. 

White [1979] presented empirical curves for the behavior of the skin-friction coefficient 
with respect to the Reynolds number based on x.  Figure 109 shows that the solution obtained with 
the linear q-w model matches the curves closely, transitioning from laminar to turbulent behavior near 
Rex = 100,000.  Figure 110 shows the pressure gradient along the flat plate, where it can be seen to 
be near zero relative to the gradients caused by the inlet boundary condition and the transition to 
turbulence.  Finally, Figure 111 shows that the velocity profile at Rex = 4,000,000 matches the 
expected near-wall behavior. 

9.5 SUBOFF Barebody 

At this point, having successfully isolated and tested the various terms of the linear and 
nonlinear model, the code can begin to address problems on geometries of interest.  The first such 
case also introduces a curvilinear grid and a stagnation point to the model for the first time, so it is 
kept as simple as possible otherwise.  On the other hand, the geometry has been tested 
experimentally, and experimental data are available for quantities such as skin friction and pressure on 
the hull. 

The flow over the axisymmetric, bare SUBOFF body was solved using an O-type grid 
rotated through 90° with 131x51x11 grid points (73,491 total).  Symmetry was enforced in the 
circumferential direction and along the body's axis, and characteristic variable boundary conditions 
were specified for the far-field.  Freestream turbulence levels of q = 0.006 and o> = 0.05 were applied 
and nondimensionalized with respect to freestream velocity and the maximum body radius.  The 
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Reynolds number based on body length was 12,000,000.  The two-equation model was again cold- 
started with a CFL number of 0.1 and gradually increased to a CFL number of 40 over the course of 
convergence. 

Experimental data are available for coefficients of pressure and skin friction along the 
surface of the body.  Figure 112 compares experimental data for Cp with numerical solutions given 
by both the modified Baldwin-Lomax turbulence model and the linear q-w turbulence model, while 
Figure 113 compares experimental data for Cfmth both solutions.  The two-equation model matches 
the algebraic model closely for most of the body length but improves the prediction of the surface 
pressure and, especially, the skin friction toward the aft end of the body. 

It is important in this case that special attention be paid to the two-equation model to 
prevent the over-prediction of turbulence at the stagnation point.  Common to two-equation models, 
the problem is referred to as the stagnation point anomaly.  Here, this anomaly was treated through 
the use of a limiter on u which arises from the readability considerations shown by Durbin [1996]. 
This treatment is straight-forward and based on fundamental, mathematical requirements.  As such, 
the use of a limiter is completely general in theory but will require further testing to ensure that it is 
successful in practice. 

9.6 Prolate Spheroid (Nonlinear Model) 

A wealth of experimental maneuvering data has been provided in a series of experiments, 
beginning with the work of Chesnakas, Simpson, and Madden [1994].  In the first several tests, the 
"vehicle" of interest is a 6:1 prolate spheroid which was tested first at an angle-of-incidence and later 
during pitching and plunging motions.  These tests provide extensive measurements of the velocities 
and Reynolds stresses around a simple, curved body and a first step into the prediction of 
maneuvering underwater vehicles. 

To begin, the stand-alone nonlinear k-e model was applied in solving for the flow over a 
6:1 prolate spheroid at 10° angle of attack and a Reynolds number of 4,200,000, according to the 
experimental work of Chesnakas, Simpson, and Madden [1994].  A plane of symmetry was used so 
that only half of the flow needed to be examined, thus halving the grid size to 111x41x41 (186,591 
points). 

Computational results were compared to the experimental results in local freestream 
coordinates for all three components of velocity, for the flow angle, and for the six components of the 
Reynolds stress tensor at a number of different locations around the spheroid.  These results are 
presented in Figures 114, 115, 116, and 117.  It can be seen that, without any modifications to adjust 
for the new application, the nonlinear k-e model is able to closely capture the velocity profiles and 
flow angles and approximate most of the features of the Reynolds stress profiles.  In particular, the 
anisotropy of the normal Reynolds stresses is greatly enhanced compared to the linear k-e predictions. 

Calculations of this case using the embedded q-u> coding are underway but were not 
completed at the time of this writing. 
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10.  Results Including Vehicle Dynamics 

All of the results to this point have demonstrated the capabilities of the UNCLE code. 
However, to compute the flow over an actual maneuvering vehicle, one must also include 
computations of the vehicle dynamics.  In order to demonstrate the coupling between the vehicle 
dynamics and the fluid dynamics, the research team first performed simulations of two freely-falling 
bodies at moderate Reynolds numbers: a sphere and a 6:1 prolate spheroid.  These cases were 
attractive for two reasons.  First, by limiting the Reynolds numbers to regimes where the flow field is 
unsteady but not turbulent, one can remove the necessity of including the additional complication of a 
turbulence model.  Second, by utilizing a weight/buoyancy imbalance to provide a net force, one does 
not require any arbitrary body forces to obtain vehicle motion.  The remaining test cases involved the 
fully-appended SUBOFF geometry and the algebraic turbulence model.  Initially, all appendages were 
rigidly attached to the hull and the propulsive force was provided by a body force in the region of the 
propeller.  Later cases included a fully rotating five-bladed propeller. 

10.1 Free-Falling Sphere 

The first coupled simulation was a negatively buoyant sphere freely falling through a viscous 
fluid.  While this case is primarily of academic interest, it does reveal the necessity of coupling the 
vehicle dynamics and the fluid dynamics.  The test case was designed to yield a terminal condition 
corresponding to a Reynolds number (based on sphere diameter) of about 1,000.  Table 7 gives the 
properties of the fluid and the 7-millimeter-diameter sphere, while Figure 118 shows a sketch of the 
simulation with the fluid at rest-that is, no far-field velocity. 

Table 7.  Key Properties for the Free-Falling Sphere Test Case 

Kinematic Viscosity of the Fluid 0.000002795 m2/s 

Density of the Fluid 1,085 kg/m3 

Density of the Sphere 2,170 kg/m3 

A "tethered condition" was used to provide the starting condition for the coupled 
computation, in which the sphere was held rigidly in place and the fluid was given a uniform far-field 
velocity.  Initially, UNCLE was run using local time steps, corresponding to a CFL number of 10. 
The code was run this way for several hundred iterations, with the intention of quickly eliminating 
most of the large errors in the domain.   From this solution, the case was restarted and run time- 
accurately for several thousand time steps with the nondimensional time step set to At =0.01 (which 
implies that it takes 100 time steps to traverse one body diameter at a nondimensional velocity of 
1.0).  After these time-accurate computations, the uniform far-field velocity was subtracted from the 
velocity at every point in the domain and the sphere was given an initial velocity equal to the negative 
of the far-field velocity.  This velocity was the initial condition for the coupled Reynolds-averaged 
Navier-Stokes/six degree-of-freedom (RANS/6DOF) simulation.  From this condition, the 
RANS/6DOF simulation was run with Af=0.01 for 10,000 time steps.  This computational test case 
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was started in this manner since most maneuvering vehicle simulations will begin from some sort of 
well-defined, uniform, non-stationary state (for example, "straight and level flight").  Also, this test 
case demonstrates that the UNCLE code has the capability to both generate the starting state and 
execute the coupled RANS/6DOF simulation. 

The computational grid used for this simulation consisted of two blocks with 16x35x41 grid 
points each (45,920 total grid points).  The case was run single-precision on an IBM RS6000 
Model 590 workstation and required approximately 25 Mbytes of memory.  Although the case was 
initially run using an early version of the UNCLE code, the results included here are from a run 
using the latest version.  The total run time for the 10,000 time steps of the coupled RANS/6DOF 
simulation was about 35 hours, with only 9% of the run time devoted to the force and vehicle 
dynamics calculations. 

Figure 119 shows the time histories of the body-fixed velocities and rotation rates for the 
sphere.  These time histories result from integration of the vehicle dynamics equations (Equation 21). 
The time histories of the sphere's inertial orientation and position are shown in Figures 120a and 
120b, respectively.  These time histories are obtained from the solution of the kinematical relations 
(Equations 22 and 23).  At t = 0, Figures 119 and 120 show that the sphere initially resided at the 
inertial origin, with zero orientation angles, no rotation, and an initial velocity of 1.0 in the positive 
z-direction (downward).  From t = 0, the sphere began its untethered free fall.  Figure 119 clearly 
shows the highly unsteady nature of the calculation. 

Because of the large changes in sphere orientation indicated in Figure 120a, it is nearly 
impossible to describe heuristically what is happening to the sphere in Figures 119a and 119b in terms 
of "streamwise," "sideslip," and "plunge" velocities, or "roll," "pitch," and "yaw" rates.  However, 
observing the sphere's inertial position in Figure 120b shows that the sphere does not fall in a straight 
line.  In fact, by t = 100, the sphere attains rather appreciable offsets in the X and Y coordinates. 
Also, the speed at which the sphere falls (indicated by the slope of the Z-coordinate) changes at about 
t = 40 and seems to oscillate about a smaller value than that with which it began.  Interestingly, it is 
also at around t = 40 that the sphere orientation began to experience large oscillations. It seems that 
the sphere, which began its free fall with only translational kinetic energy, acquires rotational kinetic 
energy as a result of the unsteady fluid dynamics.  At around t = 40, some event occurred that 
caused a significant amount of energy to transfer to the rotational modes.  The result is that by 
t = 100, the sphere is falling not only appreciably slower (Figure 120b), but with significant rotation 
rates about all three axes (Figure 119b). 

From examination of the flow field, it appears that the primary contributor to these unsteady 
forces and moments is the presence of a ring vortex on the leeward side of the sphere.  Figure 121 
shows particle traces in the relative velocity field on a slice of the flow field through this vortex.  The 
asymmetric orientation of this vortex appears to give rise to transverse forces and moments, and its 
presence on the back side of the sphere also generates a large pressure or form drag.  Based on 
tethered results, it is believed that this vortex exhibits a sort of random precession.  In tethered 
calculations, where the trajectory of the sphere is prescribed as a straight line at constant speed, the 
unsteady transverse forces appear to oscillate in a plane parallel to the sphere's velocity vector.  This 
plane rotates about the velocity vector with a frequency and direction that varies in time in an 
apparently random fashion.  It is believed that a related phenomenon is present in the untethered 
simulation. 
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10.2  Free-Falling Prolate Spheroid 

The second test case for the coupling between the vehicle and fluid dynamics involved a 
freely-falling 6:1 prolate spheroid.  This case represents a step closer, physically, to the ultimate goal 
of computing the coupled vehicle and fluid dynamics of a submerged, streamlined body.  This case is 
different from the sphere case, not only in the use of a more streamlined geometry, but also due to 
the fact that the stability of the body was augmented by an assumed density distribution of the prolate 
spheroid. 

Specifically, the prolate spheroid was assumed to be constructed of two different materials, 
one light and one heavy, with the interface at the minor-axis plane of symmetry.  Table 8 provides 
properties of the prolate spheroid and the fluid. The effect of the disparate densities of this 1.2-meter 
long prolate spheroid was to move the center of gravity 0.2 meters away from the geometric centroid 
(and center of buoyancy), along the axis of rotational symmetry.  With the heavy side pointed down 
(positive Z-direction), this offset provided a natural restoring moment and helped the prolate spheroid 
maintain its initial orientation. 

Table 8.  Key Properties for the Free-Falling Prolate-Spheroid Test Case 

Kinematic Viscosity of the Fluid 0.001182 m2/s 

Density of the Fluid 0.001261 kg/m3 

Density of the Downward Portion of 
the Prolate Spheroid 

5,774 kg/m3 

Density of the Upward Portion of 
the Prolate Spheroid 

200 kg/m3 

The properties in Table 8 were not arrived at arbitrarily; they came from an attempt to limit 
the terminal Reynolds number to a value that would allow for a laminar flow solution, here 
Relem = 7,500.  The terminal condition was estimated by determining the time-averaged drag of the 
prolate spheroid before it was "released" (that is, coupled with the 6DOF solver).  Knowing the time- 
averaged drag and choosing a length, fluid, and terminal Reynolds number allows one to fix the 
required weight and, hence, the average density of the vehicle.  Of course, as was made clear by the 
sphere case, the untethered behavior can be very different from the tethered behavior; nevertheless, 
this drag calculation is the only a priori estimate available.  Figure 122 shows a schematic of this 
simulation. 

The computational grid used was a single-block, O-type grid with 31x35x41 (44,485) grid 
points.  The case was run in single precision on an IBM RS6000 Model 3AT workstation.  The 
results shown here were obtained from a run using an earlier version of the UNCLE code, a version 
that did not possess multiblock nor unsteady multigrid capability.  Because the required memory and 
CPU time do not represent the current code capabilities, they are not quoted for this case (as they 
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were for the free-falling sphere).  This prolate-spheroid calculation was also started somewhat 
differently than the sphere calculation.  No local time-stepping was used as in the sphere initialization. 
Here, the calculation was started from scratch in a time-accurate, tethered mode.  Also, the time step 
was not explicitly set; rather, the maximum CFL number in the domain was specified to be 10. 
Unfortunately, this specification resulted in an overly-conservative time step of Ar « 0.001.  The 
prolate spheroid was run tethered for about 6,000 time steps before it was released and, then, run 
untethered for an additional 11,000 time steps.  It should be noted that, unlike the sphere calculation, 
the time variable was not reset to zero upon release; here, t = 0 corresponds to the beginning of the 
entire calculation. 

Figure 123 contains the body-fixed velocities and rotation rates of the prolate spheroid.  The 
6DOF results begin at t = 6.47.  The rate of descent is constant, w = 1.0, and small oscillations 
occur in u and v about 0.0, with v having the larger amplitude.  Figure 123b shows p and q both 
oscillating about 0.0, with p displaying the larger amplitude.  This shows that the prolate spheroid 
exhibits more motion in the y-z plane than in the x-z plane as it falls untethered.  This preferential 
direction of the "wobble" is due to the asymmetric state of the flow field at the moment of release 
(t = 6.47).  A nonzero transverse force at release (likely from the leewardside unsteady ring vortex) 
gave the prolate spheroid an initial "kick" in the y-z plane that is reflected in its subsequent behavior. 

Figure 124 presents the time histories of the inertial orientation and position of the prolate 
spheroid. This figure shows that, like the sphere (except to a far lesser degree), the prolate spheroid 
veers from a straight path.  Figure 124a shows that the orientation angle <f> oscillates not about 0.0, 
but about an angle that becomes increasingly negative with time.  The angle 0 exhibits this same 
behavior, though less noticeably.  The angle \p remains 0.0, indicating that the prolate spheroid does 
not roll as it falls.  Figure 124b shows that, by the time the calculation was terminated at t ~ 18, the 
prolate spheroid achieved nonzero values for X and Y (although amounting to only a fraction of the 
prolate-spheroid length).  The constant slope of the Z trace demonstrates the achievement of a true 
terminal condition. 

For completeness, Figure 125 includes particle traces in the relative velocity field of the 
prolate spheroid.  In analogy with the free-falling sphere (Figure 121), a ring vortex is apparent near 
the tail of the prolate spheroid.  Clearly, this vortex is of a scale that is markedly smaller than the 
scale of the prolate spheroid.  This was not the case for the sphere, where the scales were 
comparable. 

Finally, it is interesting to compare the overall results from the sphere and prolate-spheroid 
calculations.  Both cases were normalized in essentially the same way, using the predicted terminal 
velocity and the diameter for the sphere and the length for the prolate spheroid.  Yet, consistently, the 
forces and moments and subsequent motion of the prolate spheroid were an order of magnitude (or 
more) smaller than those for the sphere.  The prolate spheroid does indeed appear to be a significantly 
more stable body than the sphere, although its absolute stability has yet to be determined (pending a 
much longer run). 
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10.3  SUBOFF with a Body-Force Propeller Model 

After testing coupled RANS/6DOF simulations of freely falling bodies, the research team next 
proceeded to compute a coupled simulation of the previously described fully-appended SUBOFF 
vehicle performing very simple maneuvers.  For this first coupled SUBOFF computation, the team 
modeled the propeller with body forces (or an actuator disc), as described previously.  Roddy [1990] 
gives the physical characteristics of the vehicle (length, mass, moments of inertia, locations of centers 
of gravity and buoyancy, et cetera) for the tow-tank model of SUBOFF.  The medium was taken to 
be fresh water at 68° F.  To achieve the starting condition of straight-and-level flight at a velocity of 
10.97 ft/sec and a Reynolds number of 12,800,000 (based on vehicle length), the team ran UNCLE 
for 300 iterations with local time steps (CFL = 10) and 3 levels of multigrid at each iteration.  The 
code was then run time-accurately for an additional 150 time steps at a nondimensional time step of 
0.005, also using three levels of multigrid.  The resulting flow field was taken to be the initial 
condition for the coupled RANS/6DOF simulation.  Figure 126 shows a schematic of the initial 
positions of the vehicle, the body-fixed origin, and the inertial origin. (Note that the relative 
positions of the centers of gravity and buoyancy in Figure 126 are exaggerated for clarity.) 

The computational grid for the coupled RANS/6DOF calculation consisted of 36 blocks and a 
total of 1,469,412 grid points.  The code was run using double precision accuracy on an IBM RS6000 
Model 590 workstation.  Using three levels of multigrid, the simulation required 360 Mbytes of 
memory and 414 CPU seconds per time step.  The time step for this calculation was fixed at 
At = 0.005.  In more meaningful terms, this means that at a nondimensional vehicle velocity of 1.0, 
it required approximately 23 CPU hours to move the vehicle one body length.   As with the free-fall 
calculations, the 6DOF coupling made up about 8% of the total run time.   For the results shown here, 
the entire coupled calculation, start to finish, required about 115 CPU hours. 

The version of the code utilized for this calculation did not have rotating-propeller capability 
nor moving-control surface capability.  Starting from straight-and-level flight, the only means 
available to affect the trajectory of the vehicle was to alter the thrust provided by the actuator disc or 
alter the weight/buoyancy ratio of the vehicle-that is, mimic some sort of ballast tank manipulation. 
Table 9 provides details of the different phases of the simulated maneuver.   Figure 127 shows the 
vehicle velocities and rotation rates in the body-fixed frame of reference, and Figure 128 shows the 
time history of the vehicle's orientation and position (that is, its trajectory). 

Table 9.  Different Phases of the SUBOFF Maneuver with a Body-Force Propeller Model 

Phase of Maneuver Starting Time, t Ending Time, t Comments 

Phase I: Accelerating Vehicle 
0.00 1.52 Neutrally Buoyant; 

Net Thrust 

Phase II: Positive Buoyancy 1.52 2.52 20% Weight Reduction 

Phase III: Neutral Buoyancy 2.52 4.27 Original Weight Restored 

Phase IV: Thrust Reduction 4.27 5.02 95% Thrust Reduction 
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10.3.1  Phase I: Accelerating Vehicle 

Phase I of the maneuver is essentially straight-and-level flight (heading due north), with the 
vehicle neutrally buoyant, and with the actuator disc generating a net thrust.  Figure 127 shows that 
the net thrust accelerates the vehicle during this phase (increasing u), with no discernable sideslip (v) 
or plunge (w) velocities.  Figure 127b, however, does indicate the development of a small roll rate 
(p), as well as pitch rate (q), over this interval.  Consistent with these roll and pitch rates, 
Figure 128a indicates that by t = 1.52, the vehicle exhibits a slightly rolled and nose-up attitude (that 
is, <j> and 6 are both < 1° each). 

Figure 129 shows contours of relative velocity magnitude on the geometric symmetry plane at 
t = 0.02--very shortly after the initiation of the coupled RANS/6DOF calculation.  The position of 
the inertial axes near the nose of the vehicle shows that at this time, the vehicle has moved forward a 
distance equal to about 2% of its length.  At this time, the sail wake appears to be divided into two 
parts by the wakes from the sail planes. The propeller disc appears to ingest the lower portion of this 
sail wake, as well as most of the rudder wakes.  Finally, the significant flow acceleration through the 
actuator disc (which is responsible for the net thrust) is readily apparent just downstream of the stern 
appendages. 

10.3.2 Phase II: Positive Buoyancy 

Phase II of the maneuver begins with an instantaneous weight reduction of 20%.  This 
reduction imparts an instantaneous net upward force at the center of gravity, which causes an upward 
acceleration of the center of gravity, which, when combined with its forward velocity, induces a 
negative flow incidence on the vehicle.  This negative flow incidence results in a significant 
downward hydrodynamic force and nose-down pitching moment on the vehicle. 

Figure 127a shows a slow down in the rate of acceleration of the vehicle in this phase, with 
the «-velocity approaching a constant by t = 2.52.  The appearance of the negative w-velocity over 
the interval is a direct result of the sudden buoyant force; it too, appears to level off by t = 2.52. 
There is no sideslip (v) velocity apparent during this portion of the maneuver.  The most striking 
feature of Phase II of the maneuver, in Figure 127b, is the rapid development of a significant nose- 
down pitch rate (negative #)--with the pitch rate reaching 20° per unit time by the end of the phase. 
Also in Figure 127b, the small roll rate continues to increase and a very small, positive yaw rate 
develops. 

During this positive buoyancy phase, Figure 128a shows that the vehicle rolls approximately 
1° and pitches nose-down approximately 9°.  Figure 128b shows that the vehicle continues to 
maintain its due-north heading, although its depth decreases by about 10% of the vehicle length by the 
end of the phase. The net result of instantaneously decreasing the vehicle's weight by 20% at a 
significant forward speed is a rather small decrease in depth accompanied by an extreme nose-down 
pitch. 

Figure 130 shows contours of relative velocity magnitude on the geometric symmetry plane at 
the end of this second phase (t = 2.52).  The contours away from the body and almost parallel to it 
are due to the rapid nose-down pitch rate that the vehicle is experiencing.  The horizontal line running 
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through the center of the figure (and intersecting the nose of the vehicle just above the stagnation 
point) is the inertiai X-axis.  The center of gravity of the vehicle is located roughly midway between 
the nose and the tail along the pressure hull symmetry axis.  The figure demonstrates that the center 
of gravity lies just a small fraction of the hull length above the X-axis.  Also clearly evident is the 9° 
nose-down attitude of the vehicle.  As in Figure 129, Figure 130 shows a significant flow acceleration 
through the propeller disc.  Unlike Figure 129, however, Figure 130 shows the entire sail wake being 
ingested by the propeller disc. 

10.3.3 Phase III: Neutral Buoyancy 

Phase III of the maneuver is initiated by an instantaneous return to neutral buoyancy at 
t = 2.52; with the intention of stopping the rapid nose-down pitching of the vehicle.  Figure 127a 
shows that the vehicle begins to accelerate again through Phase III of the maneuver.  The plunge 
velocity (w) appears to overshoot zero at about t = 3.0 and eventually relaxes back toward zero by 
t = \21, while the sideslip velocity (v) is negligible.  Figure 127b shows some oscillations in the roll 
rate (p) during this portion of the maneuver indicating some relatively low amplitude rocking motion 
about the roll axis.  The yaw rate (r) exhibits a similar behavior, though with much smaller 
amplitude.  The most important aspect of this neutral buoyancy phase is the rapid reduction in the 
magnitude of the pitch rate (q) upon removal of the buoyant force at t = 2.52.  In fact, by t ~ 3.45, 
the pitch rate overshoots zero and becomes positive, indicating a nose-up pitch rate; the vehicle 
appears to be righting itself.  At t « 3.85 the positive pitch rate reaches a maximum and, then, 
begins to relax toward zero once again. 

Figure 128a shows oscillations in both roll (</>) and yaw (i/0 angles during this phase of the 
maneuver.  They both appear to vary with approximately the same temporal period, though <j> seems 
to oscillate about an angle that becomes increasingly positive over the interval, while \p oscillates 
about an increasingly negative angle.  Even so, both angles remain relatively small over the interval 
(that is, less than 1.5°).  Because of rotational inertia, the nose-down pitch angle (-0) continues to 
increase until t ~ 3.45 when the vehicle reaches a maximum nose-down attitude of almost 20°. 
From t ~ 3.45 to t = 4.27, the vehicle begins to right itself, though at a slower and slower rate.   By 
t = 4.27, the vehicle is oriented nose-down just over 17°.   Figure 128b shows that the vehicle 
continues on its northerly course (that is, Y remains « 0).  The upward curvature in X from the 
continued acceleration is almost indiscernible in this figure.  The interesting aspect of this third phase 
of the maneuver is the relatively rapid increase in depth of the vehicle, from Z = -0.1 at t = 2.52 to 
Z ~ 0.6 at t = 4.27.  The vehicle is reaching a new equilibrium flight path that has a downward 
component.  In other words, once the vehicle is orientated nose down and the buoyant force removed, 
the only remaining force acting on the vehicle is from the propulsor.  This propulsor force acts in the 
direction of positive x~which, in this case, happens to be pointing approximately 17° downward. 
The tendency of the vehicle will be to stay on this path and accelerate until a terminal condition is 
achieved. 

10.3.4 Phase IV: Thrust Reduction 

The final phase of the maneuver begins with a sudden 95 % reduction in the propeller thrust. 
Figure 127a clearly shows the reduction in the vehicle's velocity (u) during this last phase of the 
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maneuver.  The propeller has almost been "turned off" and the result is a rapid slow down due to the 
hull drag force.  The sideslip and plunge velocities (v and w, respectively) are negligible over 
Phase IV.  In Figure 127b, it appears as though the pitch rate (q) is asymptoting to zero as the vehicle 
settles on a new straight (but descending) trajectory.  In this figure, the roll and yaw rates (p and r, 
respectively) continue their growing oscillatory behavior.  Based on the apparent diverging behavior 
of p and r as far back as the second phase of the maneuver, it appears entirely conceivable that there 
is some sort of coupled roll/yaw instability in this hull.  In fact, Roddy [1990] determined, based on 
captive-model tests, that the appended SUBOFF hull (without sail planes) is unstable in both the 
vertical and horizontal planes of motion. 

The continued increase in the roll and yaw angles is evident in Figure 128a, where by 
t = 5.02, the vehicle is rolled (<j> =) +2.0° and yawed about (^ =) -0.5°.  The pitch angle appears 
to be approaching a new equilibrium value of approximately -17°.  Figure 128b shows the vehicle 
steadfastly continuing on its northerly course with no discernable east/west excursions.  The vehicle 
also continues to increase its depth.  In fact, the net result of this maneuver is that at t = 5.02, the 
vehicle has traveled —5.6 body lengths north and ~ 1 body length down.  Also, the vehicle has 
pitched ~ 17° nose-down, rolled ~2°, and yawed -0.5°, while heading straight ahead (relative to 
the nose of the vehicle) at a velocity of ~1.3 and decelerating. 

Figure 131 shows contours of relative velocity magnitude on the geometric symmetry plane at 
the end of the maneuver.  The horizontal line at the extreme top of this figure is the inertial X-axis. 
The lack of far-field contours in Figure 131, like those that appear in Figure 130, is due to the fact 
that the pitch rate is negligible at t = 5.02.  The lack of significant propeller thrust in Figure 131 is 
evident by the lack of flow acceleration through the propeller disc.  In fact, other than the lack of 
propeller thrust, the 17° nose-down inclination of the trajectory, and the slightly larger range in 
velocity, the flow fields in Figures 129 and 131 are quite similar. 

10.4 Unconstrained Motion of SUBOFF with a Rotating Propeller 

The previous test case provided the first simulation-albeit, a very simple simulation- of a 
maneuvering underwater vehicle with the fluid dynamics and the vehicle dynamics coupled together. 
The last three test cases expand on this first maneuvering SUBOFF vehicle by looking at more 
complex situations.  These cases involve SUBOFF with an actual rotating propeller, instead of a 
propeller modeled with body forces.  Here, the vehicle is free to react to the forces and moments 
applied to it by the fluid, with the only control coming from changes in the angular velocity of the 
propeller.  Table 10 gives key properties for all three of the test cases involving the fully-appended 
SUBOFF with a rotating propeller, while Table 11 provides the key computational parameters. 

The magnitude of the time step, given in the Table 11, is based on the nondimensional 
angular velocity of the propeller and the number of time steps chosen to make a complete revolution. 
The nondimensional angular velocity of the propeller is defined as 

<3 = u tref. 
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The reference time tKf is defined as 

Jrtf 
lref V. ref 

where Lref is the reference length (= 14.2917 ft) and Vref is the reference velocity (= 10.97 ft/s). 
Most of" the calculations involving SUBOFF with a rotating propeller used 120 time steps per 
revolution and Ar = 0.00074.  With this time scale, it will take the vehicle approximately 137 hours 
of CPU time to move one body length forward.  For the last test case with the propeller rotating in 
reverse, the number of time steps per revolution is taken as 160 with Ar = 0.0005. 

Table 10. Key Properties for the Fully-Appended SUBOFF with a Rotating Propeller 

SUBOFF Body Length 14.2917 ft 

SUBOFF Initial Velocity 10.97 ft/sec 

Initial Reynolds Number 12,800,000 

Body Weight 1557 lbf 

Fluid Density 1.937 slugs/ft3 

Location of the Center of Gravity (-0.01327 ft, 0.0, 0.0) 

Location of the Center of Bouyancy (-0.01327 ft, 0.0, -0.0067 ft) 

Propeller Rotation Rate 515.6 rpm 

Table 11.  Key Computational Parameters for the Fully-Appended SUBOFF with a Rotating Propeller 

Computer IBM RS6000 Model 590 

RAM 555 Mb 

Number of Blocks 51 

Number of Grid Points Per Block 
Blocks 1-24: 49x17x41 (= 34,153 Points) 

Blocks 25-36: 33x17x41 (= 23,001 Points) 
Blocks 37-51: 65x17x33 (= 36,465 Points) 

Total Number of Grid Points 1,642,659 

Levels of Multigrid 3 

Magnitude of the Time Step, Ar 0.00074 

CPU/Time Step/Grid Point 223 jtisec 
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As with the simulation of the SUBOFF motion using an acutator disc, the simulation of 
SUBOFF with a rotating propeller requires an initial condition of the flow over SUBOFF using only 
the UNCLE code, without any coupling to the 6DOF equations.  Instead of reaching a steady-state 
solution, however, this initial solution of the RANS equations reaches a periodic solution, since the 
propeller ingests a circumferentially nonuniform inflow as it rotates through the wakes of the sail and 
stern appendages.  Figure 132 shows the contour lines of the «-component of velocity on a plane 
between the stern appendages and the propeller.  Note that the wakes and vortices from the sail, the 
sail planes, and the four stern appendages are evident in this plot, resulting in a nonuniform inflow to 
the propeller.  Figure 133 shows the time history of the static pressure, registered at a grid point 
located on the pressure surface of a blade, close to the leading edge and near the hub.  The initial 
condition is achieved once the flow about the rotating propeller establishes a periodic flow pattern. 
Recall that this initial condition matches the test case shown in Figure 90.  Looking at the entire 
vehicle, Figure 90 shows contour plots of static pressure for this periodic initial solution of the flow 
over SUBOFF, while Figure 134 shows more details of this periodic flow on the pressure and suction 
surfaces of the propeller.  These plots indicate that the pressure distribution on the blades are not 
steady as the blades rotate through the appendage wakes. 

For this test case, the propeller rotational velocity was varied during the calculation to either 
increase or decrease the vehicle speed.  Before investigating the effect of changes in the propeller 
rotational velocity on the vehicle motion, Figure 135 reviews the definitions of the force, moment, 
and velocity components in the body-fixed coordinate system.  Using these definitions, Figure 136 
demonstrates the variation, in nondimensional time, of the vehicle forward velocity (w)--as well as the 
integrated forces acting on the vehicle.  This graph also shows the variation of the propeller speed (in 
red) plotted versus time.  Using an initial nondimensional propeller speed of 77.2 obtained from the 
vehicle's self-propulsion point, the vehicle starts to decelerate.  This deceleration is consistent with 
the negative net axial force acting on the vehicle, also shown in Figure 136.  Recall that the advance 
ratio of the propeller at self-propulsion was obtained from towing-tank resistance tests, without any 
sail planes.  The additional drag created by adding sail planes results in the propeller needing more 
angular velocity to generate the additional thrust required for self-propulsion. 

From t = 0.08 to t = 0.132, the propeller speed is linearly increased from 77.2 to 115.8. 
This time interval corresponds to one full revolution of the propeller.  Responding to the increase in 
the propeller speed, the net axial force (the x-component of the force in Figure 136) starts to increase 
from a negative value to a positive value and, after a small overshoot, it drops to a constant positive 
value-corresponding to the constant propeller speed of 115.8.  As the propeller speed increases, the 
forward velocity of the vehicle increases.  This increase continues, even as the propeller speed is kept 
at the constant value of 115.8, since a net thrust acts on this over-propelled vehicle (see Figure 136). 
To slow the vehicle, the propeller speed was decreased from 115.8 to 100.0 and, then, kept constant 
from t = 0.63 to t = 0.8.  The dynamic response of the vehicle to the propeller speed is immediate 
and consistent with the physical expectations.  The net axial force acting on the vehicle decreases, and 
the vehicle forward velocity responds by also decreasing.  The variation of the vehicle forces in the 
y- and z-directions is also shown in Figure 136.  These transient out-of-plane forces include a periodic 
waveform created by the five-bladed propeller ingesting a nonuniform inflow.  Also note that changes 
in the out-of-plane forces are an order of magnitude less than changes in the in-plane or axial force. 

Figure 137 shows the variation of the moments acting on the vehicle.  For reference, this 
figure also shows the variation of the propeller speed and the forward velocity of the vehicle. 
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Because of the propeller's sense of rotation, it exerts a positive moment on the fluid and the fluid, in 
turn, exerts a negative rolling moment (the x-component of the moment) on the vehicle.  The rate of 
change of the rolling moment is consistent with the variation in the propeller speed.  Examination of 
the moments in the other two directions (that is, the y- and z-components) again demonstrates the 
underlying unsteadiness associated with the nonuniform forces acting on the propeller. 

Finally, Figure 138 shows the variation of the vehicle rotation rates (degrees per unit of 
nondimensional time) with respect to time.  The maximum change in the rotation rates occurs in roll, 
with no significant changes occurring for either the pitch or yaw rate.  Since no control is applied to 
the vehicle, it is obliged to roll in the direction opposite to the direction of propeller rotation.  In this 
case, since the sense of rotation of the propeller is positive, the roll rate has a negative value. 
Figure 138 demonstrates that the vehicle response to the increase in the propeller speed dictates the 
change in the roll rate. The roll rate stabilizes to a constant value once the propeller speed is kept 
constant at 100.0. The actual values of the roll, pitch, and the yaw angles versus time are shown in 
Figure 139. 

10.5 Roll and Yaw Moments Applied to SUBOFF with a Rotating Propeller 

The next test case also involves the fully-appended SUBOFF vehicle with a rotating propeller. 
Without the complication of actually having moving control surfaces, the research team controlled the 
maneuvering vehicle in this case by applying two "external" controls.  First, as shown in the previous 
test case, the vehicle will roll in the direction opposite of the propeller rotation.  To counteract this 
tendency in actual underwater vehicles, the rudders are differentially splayed~that is, the upper and 
lower rudders are offset by some pre-set angle.  This practice is called "splitting the rudders." 
Another means to create this counteractive roll moment is to increase the distance between the center 
of buoyancy and the center of gravity.  However, for this test case, the team has directly applied an 
external rolling moment into the 6DOF equations in order to counteract the roll produced by the 
propeller torque.  A second external control was used in order to turn the vehicle without using 
moving control surfaces.  Here, the team directly applied an external yawing moment about the center 
of gravity into the 6DOF equations to simulate a turn. 

Based on the experience gained from the first coupled computation of SUBOFF with a 
rotating propeller, the team increased the propeller speed from 77.2 to 95.0 to stop the vehicle from 
decelerating.  This increase occurred within one revolution of the propeller, or for the time period 
from 0.0 through 0.073.   Figure 140 shows that this increase in propeller speed does, in fact, 
increase the net axial force-such that the vehicle experiences a small net thrust.  From this point in 
time onward, the propeller speed was kept at the constant value of 95.0. 

Figure 141 shows the time history of the yawing moment (the z-component of the moment) in 
the inertial frame of reference and in the body-fixed frame of reference.  The prescribed yawing 
moment is applied in the inertial frame.   Starting at time t = 0.4656, the moment is gradually 
increased from approximately zero to the nondimensional value of 0.0001.  The moment is kept at 
this constant value for the rest of the computation.  Correspondingly, Figure 140 shows that the sway 
or sideslip velocity (v-component of the velocity in the y-direction) also increases.  Transformation of 
the rolling moment from the inertial frame of reference to the body-fixed frame indicates an 
increasing rolling moment in the body-fixed frame of reference, as seen in Figure 141.  This is due to 
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the coupling of the motion.  As the vehicle experiences the turn, the rolling moment (the x-component 
of the moment) takes on increasingly negative values, indicating a tendency of the vehicle to roll 
during the turn.  Considering the fact that the externally applied rolling moment has compensated for 
the rolling moment created by the propeller, the turning motion accounts for the rolling moment seen 
in Figure 141.  This roll can be attributed to the lift generated by the sail during the turn; the sense is 
such that the sail rolls away from the center of curvature of the turn.  The rate of increase of the 
yawing moment, in the body-fixed frame, is proportional to the rate of roll of the vehicle. 

Figure 142 shows the roll rate, while Figure 143 shows the actual roll angle.  A similar 
behavior, but with less degree of severity, is shown about the pitch axis (that is, the y-axis).  The 
pitching moment (the y-component of the moment) and the corresponding pitching rate and pitching 
angle are shown in Figures 141, 142, and 143, respectively. 

For a given forward speed, the incidence angle that the fluid makes with any point on the 
vehicle is directly proportional to the distance from that point to the vehicle's center of gravity and 
the yaw rate.  As this distance becomes larger, or as the yaw rate becomes larger, the drift angle 
becomes larger as well-where the drift angle is the angle that the fluid flow makes with the 
longitudinal axis of the vehicle.  At a nondimensional time of 1.20, Figure 142 shows that the yaw 
rate is approximately 35.0° per nondimensional unit of time, and this yaw rate yields a 15.8° drift 
angle, as experienced by the nose of the vehicle.  Figure 144 gives the surface distribution of static 
pressure on the vehicle, which demonstrates how the stagnation point has moved away from the 
vehicle nose as a result of this drift angle.  The stagnation point on the sail moves in the same manner 
as the stagnation point on the vehicle nose, while the stagnation point on the upper stern appendage 
(or rudder) moves in the opposite direction.  The movement of the stagnation point on the sail 
accounts for the pressure distribution that rolls the vehicle during the turn.  Since the aft portion of 
the vehicle is downstream of the center of gravity, the drift angle--and, thus, the incidence angle on 
the upper stern appendage-has the opposite sign compared to portions of the vehicle forward of the 
center of gravity.  Figure 145 shows more clearly that this change in drift angle moves the stagnation 
point in the opposite direction of the movement on the nose and sail.  Looking upstream towards the 
propeller, Figure 146 also shows the surface distribution of static pressure at t = 1.20.  Also, 
Figure 146 shows sample particle traces that indicate the presence of a tip vortex emanating from a 
propeller blade tip. 

Figure 147 shows the trajectory of the vehicle with respect to time, with large excursions in 
the y- and ^-directions and little movement in the z-direction.  Note that the vehicle has traveled 
approximately 1.2 body lengths during a turn where the yaw angle has reached 7.0°.  Even though a 
more thorough investigation of a turning maneuver should involve a complete turn, this preliminary 
investigation does demonstrate the applicability of the coupled RANS/6DOF solver to determine both 
the hydrodynamic forces and moments, as well as the resulting movement of the vehicle. 

10.6  SUBOFF with a Propeller Rotating in Reverse 

Under this maneuvering program, the final test case demonstrates how one can use this 
coupled RANS/6DOF solver to show how fluid flow phenomena can affect the behavior of the 
vehicle.  Once again, the research team has selected the fully-appended SUBOFF vehicle with a 
rotating propeller.  For this test case, the team did not directly apply an external rolling moment into 
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the 6D0F equations in order to counteract the roll produced by the propeller torque.  Similar to the 
test case prior to the previous one where SUBOFF went through an unconstrained motion, the team 
used only changes in the propeller rotational velocity to affect the maneuver.  Therefore, the vehicle 
is free to respond to the resulting hydrodynamic forces and moments.   However, for a portion of this 
case, the propeller was allowed to rotate in a direction opposite to its design direction.  With the 
vehicle still moving forward, this case represents the most severe off-design computation for flow 
through the propeller. 

The coupled RANS/6DOF solution for this test case begins at the dimensionless time 
t = 0.462 in the middle of the test case prior to the last one where SUBOFF went through an 
unconstrained motion.  At this instant, the vehicle has traveled about 0.46 of a body length in the 
^-direction, has a nondimensional propeller speed of 115.0, and has already rolled approximately 
-5.0°. The drift angle (0.1°) and incidence angle (0.07°) are both small.  Figure 148 shows that the 
propeller speed is reduced from 115.0 to 0.0 in a dimensionless time increment of At = 0.2646. 
This portion of the maneuver requires 120 computational time steps, which is the time during which 
the propeller makes one revolution.  Further, Figure 148 shows that the propeller was reversed until 
the rotational speed reached -80.0 at t = 1.27.   Note that the rate of change of the propeller speed 
with respect to time is smaller during the increment when the propeller rotation increases in the 
negative direction.  This was simply a precautionary measure to prevent a possible instability in the 
calculation when the propeller was reversed. 

In addition, Figure 148 shows the effect of the rate of change of the propeller speed with 
respect to time.  As the propeller speed is reduced and eventually reversed, the net axial force (the x- 
component of the force)~which has an initial positive value-drops and goes through a sudden change 
of sign in a short period of time.  This change indicates that the drag force has become greater than 
the thrust, slowing the forward velocity of the vehicle.  At t = 1.27, the propeller speed takes on the 
constant value of -80.  This instance of the maneuver is marked by a rapid oscillation in the net axial 
force, which quickly stabilizes.  Furthermore, Figure 148 shows that oscillations in the lateral and 
vertical forces also accompany alterations in the propeller speed. 

10.6.1  Generation of a Ring Vortex 

Deceleration of an underwater vehicle by means of reversing the angular velocity of the 
propeller is called a crashback maneuver.  For this test case, the vehicle's velocity has dropped by 
more than 50% of its initial value by the end of the simulation at time t = 5.15.  However, during 
this crashback maneuver, the vehicle continues to move in a forward direction.  Relative to the 
vehicle itself, the fluid generally flows towards the stern, with pathlines passing outboard of the actual 
propeller.  Within the propeller region, the reversed rotation of the blades moves the fluid upstream. 
These downstream and upstream fluid motions create a shear stress and, subsequently, generate a ring 
vortex located just outboard and just downstream of the propeller blade tips.  Furthermore, the 
propeller blade tips tend to drag the vortex ring as they rotate, giving the vortex ring a helical 
structure.  The unsteady motion and eventual decay of this ring vortex has a pronounced effect on the 
hydrodynamics of the vehicle. 

Figure 149 shows the vortex ring at time t = 2.01.  The flow traces are colored by the 
magnitude of the velocity, while the blades are colored by the magnitudes of the static pressure.  The 
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arrows shown on the particle traces of the vortex ring demonstrate that the ring rotates in the same 
sense as the propeller. The vortex ring, however, is not symmetric about the axis of the propeller 
rotation.  As will be shown later, asymmetric effects of the vortex ring appear to rotate around the 
propeller, in the opposite sense of blade rotation.  Figure 149 shows that as the vortex ring rotates, 
part of the ring "touches" one or two blades, resulting in low static-pressure patches on the blade 
surfaces.  These blade surface contours of static pressure lead to regions of adverse pressure gradients 
that can cause local separation of the blade boundary layers. 

10.6.2 Characteristics of the Ring Vortex 

An examination of Figure 149 shows that the vortex ring is not symmetric about the axis of 
symmetry of the propeller.  The vortex ring has an unsteady motion both in and out of the propeller 
plane.  In other words, the ring "wobbles" around the propeller blades, similar to the motion of an 
elastic ring dropped on a solid flat surface.  At the same time t = 2.01, a side view of the vortex ring 
in Figure 150 shows the asymmetric structure of the vortex ring about the propeller's axis of 
symmetry.   Figure 151 shows a view of the vortex ring looking upstream, at the same instance of 
time.  Finally, Figure 152 shows how the structure of the vortex ring has changed from time 
t = 2.01 to time t = 2.33, during which the propeller has rotated 4.07 times. 

The strength of the vortex varies along its center line.  At time t = 2.01, Figure 153 shows 
contours of static pressure on a plane cutting through the vortex ring.  One of the characteristics of a 
vortex is that the pressure distribution is at a minimum in the vortex core and increases 
asymptotically—to the far-field pressure-with the inverse square of the radial distance from the vortex 
center.  A stronger vortex will have a smaller value of the pressure in its core.  Figure 153 shows 
that the vortex ring filament is much stronger near the top, in the vicinity of the upper blade.  The 
image of the vortex is also depicted on the surface of the upper blade. 

As the vehicle decelerates during this crashback maneuver, the w-component of the velocity 
flowing outboard of the propeller decreases.  This reduction in forward velocity will decrease the 
shear stress in the mixing region between the forward and reverse velocities.  Thus, the ring vortex 
will weaken~and eventually, once the vehicle stops, it will vanish.  Figures 154 and 155 view the 
vortex ring at time t = 5.15.  Comparing these figures with Figures 151 and 150 demonstrates the 
extent of the decay of the vortex ring. 

10.6.3 Dynamic Response of the Vehicle 

Referring back to Figure 148, random oscillations in the lateral and vertical forces occur 
during the early stages of crashback, especially when the slope of the propeller speed line changes (at 
the time when the propeller angular velocity is reduced to zero and begins to be reversed).  Then, 
after the propeller rotational speed reaches a constant value of -80 and the drag stabilizes, the lateral 
and vertical forces undergo two distinct oscillatory patterns.  First, Figure 148 shows large-amplitude, 
large-wavelength oscillations of both the lateral force (or the y-component of the force) and the 
vertical force (or the z-component of the force), with oscillations between positive and negative 
values.  These oscillations are virtually identical between the two components, except for the expected 
90° phase difference.  Figure 148 also shows small-amplitude oscillations of the out-of-plane forces 
with a much higher frequency superimposed on the large oscillations. 
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Recall from Figure 149 and subsequent figures that the unsteady vortex ring rotates and 
actually "touches" one or two blades, resulting in low static-pressure patches on the blade surfaces 
and possible local boundary layer separation.  Figure 156 shows the pressure contours on the suction 
surfaces of the propeller blades at different time intervals-with each image occurring at integral 
multiples of blade rotation.  An examination of these contours shows a low-pressure region that 
moves circumferentially about the propeller axis of symmetry in the clockwise direction~in the 
opposite direction of blade rotation.  Clearly, the tip portion of each propeller blade undergoes 
different loadings and, since the low-pressure region can lead to possible local separation, one might 
think of this phenomena as similar to the "rotating stall" phenomena that occurs in other types of 
turbomachinery flows.  It also seems likely that the low pressure on the blade surfaces could initiate 
cavitation, resulting in a phenomenon similar to "rotating cavitation." 

The time traces of Figure 148 are repeated in Figure 157, except that a new trace replaces the 
axial-force trace. This new trace represents the approximate location of the low-pressure region~or 
"rotating stall" cell-from Figure 156 as a function of time.  In Figure 157, the angle, 0, measures the 
approximate location of this low-pressure-region cell from the stern plane, in the clockwise direction 
looking upstream.  Each symbol represents the approximate circumferential location of the cell on the 
blades at an instance of time.  For clarity, these locations are plotted as a sine wave, with a line 
representing a least-squares polynomial fit. 

At time t = 2.01,  Figure 156a shows that the "rotating stall" cell is located at 0 = -270°, 
which aligns the cell with the -z-axis.  Therefore, the cell will change the loading on blades passing 
through this region and create an extreme in the vertical or z-component of the force, which is shown 
as a minimum in Figure 157.  At this position, the effect of the "rotating stall" cell appears to be 
negligible on the lateral or y-component of the force.    As the cell rotates to a position that aligns 
with the +y-axis, the cell will create an extreme in the lateral force, which is shown as a maximum 
in Figure 157.  At this position, the effect on the vertical force is negligible.  This process continues 
in time, although the force amplitudes decrease as the vehicle deceleration causes the vortex ring to 
decay.  The frequency of the rotation of these cells matches the frequency of the oscillating forces 
and, since these cells rotate at a much slower rate than the propeller blades, the blades may pass 
through the stalled region many times before the stalled region completes one rotation.  It should be 
noted that the low-pressure region rotates about the axis of symmetry of the propulsor approximately 
two times during which the amplitude of the "out-of-plane forces" becomes small.  In conclusion, it 
seems evident that this "rotating stall"~and, thus, the unsteady vortex ring-generates the large 
oscillations in the lateral and vertical forces. 

Both Figures 148 and 157 show small-amplitude, small-wavelength oscillations of the lateral 
and vertical forces superimposed on the large oscillations.  For more detail, Figure 158 zooms in on a 
portion of the time trace for the vertical or z-component of the force.  The vertical lines in this 
enlarged section separate the time intervals within which the propeller makes a complete rotation. 
There are five peaks within each time interval, each corresponding to a blade passing through a high- 
gradient flow region.  Therefore, the frequency of these small oscillations corresponds to the 
propeller blade passing frequency.  The existence of the out-of-plane forces oscillating at two distinct 
frequencies shows the capability of the coupled RANS/6DOF computations to handle multiple-time- 
scale problems. 
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The amplitude of the high-frequency oscillations is a function of the way in which the ring 
vortex interacts with the blades.  As shown previously, the ring vortex "touches" one or more blades 
at different times.   This interaction implies that the time period during which a blade passes through 
the low-pressure region varies, depending on both the proximity of the ring vortex core to the 
location of the blades and on the length of the vortex core that is close enough to the blades to make 
the low-pressure impressions on the blades.  The longer the period, the more pronounced the effect. 
Furthermore, since the ring vortex moves unsteadily, both in and out of the propeller plane, the angle 
at which blades cut through the ring vortex domain can affect the amplitude of the high-fequency 
oscillations.  These high-frequency oscillations are not unique to the crashback simulations.  They are 
present in the cases where the propulsor is rotating in the design direction.  Figure 136 demonstrates 
these oscillation in the unconstrained-motion case. 

10.6.4 Vehicle Trajectory 

Figure 159 shows the time history of the roll, pitch, and yaw rates.  These rates are induced 
on the vehicle as the direct effect of the moments, as shown in the Figure 160.  The rates are 
expressed as degrees per nondimensional unit of time.  It should be noted that in this simulation, the 
only mechanism inhibiting roll of the vehicle is that introduced by the forces of the weight and the 
buoyancy.  In the absence of any other force, the interaction of the forces of weight and buoyancy 
causes the vehicle to reach a stable equilibrium, in which the centers of buoyancy and gravity align 
vertically.  Any rotation from this position will cause these forces to generate a moment tending to 
move the vehicle back to the stable position.  However, the moment induced on the vehicle by the 
propeller causes the vehicle to rotate to a different state of stability than that defined by the weight 
and the buoyancy force.  Considering Figure 159, starting at t = 0.46, as the propeller angular 
velocity is reduced, the absolute value of the roll rate decreases.  At t =0.73, when the propeller 
rotation is reversed, the roll rate becomes positive and continues to increase until it reaches a peak at 
t = 1.39.  The vehicle continues to roll until it reaches an angle at which the moment developed by 
the forces of weight and buoyancy equals the moment developed by the rotation of the propulsor.  As 
the roll angle approaches this limiting angle, the roll rate starts to decrease.  The roll rate becomes 
zero once the roll angle reaches this limit and becomes negative as the roll angle passes this limit. 
Once the roll angle passes this limit, the righting moment produced by the weight and the buoyancy 
force beomes larger than the moment induced by the propeller and acts to move the vehicle toward 
the upright position, causing the roll rate to change direction.  The vehicle will rotate in a pendulum 
type motion until it reaches the stable equilibrium at which the roll rate is zero and the vehicle has 
rolled to an angle at which the opposing moments are equal. 

Figure 161 shows the time history of the values of the roll angle, the pitch angle, and the yaw 
angle.  Note that the vehicle reaches a maximum roll angle of 42.7°.  The small distance between the 
centers of gravity and buoyancy leads to this large roll angle before the righting moment reduces the 
amount of roll.  Figure 162 shows the variation of the vehicle's linear velocities.  The oscillations in 
the v- and w-components of velocity, as well as the yaw and pitch rates in Figure 159 and the yaw 
and pitch angles in Figure 161, correlate with the large-amplitude, large-wavelength oscillations in the 
out-of-plane forces shown in Figures 148 and 157. 

Figure 163 shows the path of the vehicle during the crashback simulation.  The initial location 
of the vehicle on this figure is indicated by a bold X.  The plot of Z-position versus K-position 
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demostrates that the center of gravity of the vehicle initially moves to a positive 7-position, then 
reverses back to zero, and finally moves to a negative K-position.  Simultaneously, the center of 
gravity of the vehicle moves upward.  These changes in the position of the vehicle are associated with 
the changes in the vehicle's orientation as shown previously in the Figure 161. 
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11.  Summary and Conclusions 

A team of researchers from the Engineering Research Center at Mississippi State 
University and the Applied Research Laboratory at The Pennsylvania State University have developed 
a physics-based method that will lead to a means of accurately predicting the forces and moments 
acting on a maneuvering, self-propelled, appended, underwater vehicle and the resulting vehicle 
motion.  This methodology has been developed in order to supplement and, eventually, replace the 
traditional correlation-based means of "predicting" the maneuvering characteristics of a submerged 
vehicle.  These correlation-based methods have difficulty with extreme maneuvers, propulsor effects, 
non-traditional vehicle shapes, vehicle modifications, and the effects of vortical structures created by 
the flow over the vehicle.  Also, these traditional methods require a large number of expensive model 
tests-tests that also have several flaws, including problems with Reynolds number scaling.  The new 
method can address these problem areas and allow the hydrodynamicist to investigate the physics of a 
maneuvering vehicle.  Thus, the new method will impact the hydrodynamic design of underwater 
vehicles. 

One primary difference exists between this new physics-based means of making 
maneuvering predictions and the old correlation-based means.  While the traditional methods use 
empirical correlations from model-scale experiments to determine the hydrodynamic forces and 
moments acting on a vehicle during a maneuver, this new method numerically solves for the fluid 
dynamics using the three-dimensional, time-dependent Reynolds-averaged Navier-Stokes equations. 
Since the Reynolds numbers of these flows are extremely large, the viscous regions must be resolved 
within the near-wall region of the turbulent boundary layers, and this resolution places severe 
demands on the numerical scheme in terms of stability and accuracy.  To make the computation of 
these high Reynolds number, unsteady flow problems practical in terms of the total CPU time, one 
must restrict the computational time-step needs by the physics of the problem being solved and not by 
the numerics of the scheme used to solve the problem. 

The UNCLE code developed here solves for the three-dimensional, time-dependent 
Reynolds-averaged Navier-Stokes equations on time-dependent curvilinear coordinates and uses 
artificial (or pseudo) compressibility to obtain the numerical solution for incompressible flow.  This 
cell-centered finite-volume code uses a third-order upwind-biased scheme, with third-order flux 
vectors based on the classical MUSCL-type of numerical flux-vector formulation.  Discretized 
Newton-relaxation is used for the solution algorithm.  Here, the solution of the equations involves 
Newton's method, with symmetric Gauss-Seidel relaxation used at each Newton iteration and the flux 
Jacobian obtained numerically.  A multigrid scheme has been added to accelerate the convergence of 
the numerical solution, including an extension for unsteady flow computations.  The UNCLE code is 
solved on dynamic, relative-motion, multiblock, structured grids.  The multiblock topology allows 
one to divide the domain into smaller regions for detailed gridding, allowing for high-quality grids on 
complex geometry.  Also, by solving the equations one block at a time, the multiblock topology 
reduces the required computer memory. 

The research team performed a number of steady and unsteady computations using this 
baseline UNCLE code.  This baseline code included an algebraic turbulence model based on the 
model developed by Baldwin and Lomax [1978].  The team modified the search routines within the 
model to better handle flows with leeward vortical structures and flows with thick stern boundary 
layers.  Initially, the validation test cases centered on the ability of UNCLE to compute simple 
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boundary layer flows, both on a flat plate and on a submarine-type vehicle called SUBOFF.  Since 
the UNCLE code uses a Roe approximate Riemann solver, the boundary layer computations gave 
very good results with only a modest number of grid points-assuming that the closest point to the 
solid surface was within the viscous sublayer.  Also, the algorithm proved to be robust in handling 
extremely high aspect ratio grids, and the multigrid scheme gave very fast convergence rates-with 
45-60% savings in CPU time over single-grid solutions.  In fact, the savings due to the multigrid 
scheme were actually higher, since this scheme gave good skin-friction results at an earlier stage of 
convergence. 

Next, the research team tested the ability of the baseline UNCLE code to handle vortical 
structures created in the flow field.  They obtained reasonable to excellent results in comparing with 
experimental measurements on a 6:1 prolate spheroid at an angle of attack that generated a three- 
dimensional cross-flow separation and for an appendage junction flow that generated a "horseshoe" or 
"necklace" vortex.  The code's ability to preserve the vortex structure as it convected downstream 
was also tested by using the idealized Thomson-Rankine vortex model.  Since the velocity distribution 
of the vortex was discontinuous at the edge of the vortex core, this test case proved to be severe. 
The basic structure of the vortex was preserved even on a relatively coarse grid, but a very fine grid 
was required to give accuracies within 1% for long convection distances.  Finally, the research team 
tested the multiblock capability of the code using SUBOFF with appendages. The UNCLE code 
reached a nearly grid-independent convergence rate, even for coarse grids, and no change in the flow 
field was found after the residual was reduced by 2.5 orders of magnitude, which is about 200 
multigrid cycles.  The flow field computations gave excellent comparisons to all measured data when 
the grid contained at least a million points for an appended vehicle without a propulsor.  Even more 
critical to future maneuvering computations, the UNCLE code gave excellent agreement with the 
force and moment data as a function of the angle of drift, with a larger number of grid points 
necessary to reach agreement with the axial-force data. 

In order to verify the ability of UNCLE to handle unsteady flow, the research team 
compared computations with measured data for impulsively started cylinders, a hydrofoil undergoing 
high-reduced-frequency gust loading, and a 6:1 prolate spheroid undergoing three prescribed, time- 
dependent maneuvers.   For a plunge maneuver with the prolate spheroid, the comparisons were good, 
with the computations giving a smaller pressure differential at the bow.  For a turning maneuver, both 
the computational and the experimental results showed that the suction peaks toward the windward 
side were greater during the unsteady maneuver than the suction peaks that would be found from a 
quasi-steady maneuver.  However, a small discrepancy existed in comparing the actual magnitude of 
the computed and measured suction peaks.  Finally, for a pitch-up maneuver, the comparisons again 
gave good agreement, with the largest discrepancies occurring on the leeward side as the vortices 
from the cross-flow separation rolled-up and on the windward side at 30° angle of attack.  Overall, 
these computations clearly showed that quasi-steady solutions would not be adequate to simulate 
unsteady maneuvers and that the UNCLE code does well in solving for the required unsteady flow. 

The action of the propulsor can greatly affect the maneuvering characteristics of a vehicle, 
and the research team first modeled the propulsor with body forces or an actuator disc.   They tested 
this capability by simulating two prescribed maneuvers with a fully-appended SUBOFF configuration. 
However, the importance of the out-of-plane forces generated by the propulsor on a real vehicle led 
the team to computing flows with an actual rotating propulsor.  This capability was realized within 
UNCLE using localized grid distortion, which insures continuous grid lines across block interfaces 
with relative motion and also minimizes grid stretching.  The numerical temporal error introduced as 
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grid lines on these adjacent blocks switch communication partners, or "click," is minimized by using 
Newton subiterations and/or multigrid cycles.  The research team tested this capability by first 
comparing with data for a freestream propeller and, then, comparing with data for a high Reynolds 
number pump.   Again, both test cases gave reasonable to excellent agreement with experimental data, 
with the axial-flow pump case providing numerous types of measurements in which to compare.  The 
research team also tested the rotating-propulsor capability by making additional computations with the 
fully-appended SUBOFF body, using a five-bladed propeller.  They found that local time stepping 
should be used for computing the start-up solution to significantly improve the convergence rate- 
before switching to minimum time stepping for the unsteady computation.  Finally, the research team 
also performed initial computations with a SUBOFF appendage moving over a flat plate.  This 
computation, which showed the expected root leakage vortex, will lead to the capability of handling 
moving control surfaces on an underwater vehicle. 

Future use of UNCLE for large-scale simulations of a maneuvering vehicle at high 
Reynolds number will require large amounts of floating-point arithmetic and considerable storage 
capacity.  Thus, from the beginning of this research program, the team investigated the use of high- 
performance parallel computing for making these types of large-scale computations using UNCLE. 
The primary objective was to develop a portable, scalable capability that would allow one to perform 
these large-scale maneuvering simulations and to reduce their run times. 

Unfortunately, the symmetric Gauss-Seidel subiterations in the sequential algorithm of 
UNCLE, which give excellent stability, convergence, and efficiency, are not easily parallelized.  The 
parallel code required spatially decomposed grid blocks assigned to separate processors, but the 
resulting decoupling of the subiterations can degrade the performance of this otherwise implicit 
algorithm.  Therefore, the team had to use a sufficient number of inexpensive subiterations in order to 
recover the convergence rate of the sequential algorithm.  The parallel algorithm uses Gauss-Seidel 
relaxation sweeps within each process but is effectively explicit across block boundaries.  The 
additional subiterations are kept inexpensive because the flux Jacobians are saved and reused.  To 
evaluate the performance of the code, the team developed a heuristic means of estimating the parallel 
performance.  This technique gave heuristic performance estimates of the CPU time requirements and 
the total time required for message passing.  The Message Passing Interface (MPI) supplies these 
interprocessor communications and allows for a high degree of portability across different computing 
platforms.  Finally, for computations with the parallel code involving a rotating propulsor, the team 
used a modified ring-buffer concept to handle the time-variable dataset associated with the rotating 
interface. 

The research team performed several computations using the parallel version of UNCLE 
that involved SUBOFF with various combinations of appendages, including a five-bladed propeller. 
All cases gave good parallel efficiency as indicated by CPU utilizations between 72% and 94%.  This 
good efficiency was obtained by using the heuristic performance estimate to match each flow case to 
the computing resources used.  Computations were run with different grid sizes and on several 
different platforms, illustrating the scalability and portability of the parallel code.  The team also 
demonstrated a considerable reduction in run time compared to the sequential code-including a test 
case with the rotating propulsor capability.  These results show the necessity of using parallel 
processing to achieve the timely turn-around of solutions needed in a design environment. 

While the baseline UNCLE code included an algebraic turbulence model, the research 
team recognized that the flow over maneuvering vehicles would have time and length scales which 
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vary dramatically from one situation to another.  Therefore, the team also investigated the use of two- 
equation turbulence models since these models avoid the need to empirically determine either type of 
scale.  For these types of flow fields that include three-dimensional, separated flow, these two- 
equation turbulence models also have to describe the near-wall, or low Reynolds-number, region.  In 
addition, the team investigated nonlinear models in order to avoid the assumpnon of an isotropic eddy 
viscosity.  The absence of differences in the normal Reynolds stresses may b- detrimental in 
computing flows such as the evolution of primary and secondary horseshoe vortices shed from 
appendage-hull intersections. 

Initially, the research team concentrated their turbulence model in    Ttigation on a stand- 
alone k-e turbulence model and, then later, installed a q-o> turbulence model c ectly into the UNCLE 
code.  One can derive one model from the other one using a straight-forward change of variables, 
with the main difference being the damping function in the low-Reynolds-number modification. 
Within UNCLE, the two-equation turbulence model is "loosely coupled" in that these equations are 
solved as a separate system from the continuity and momentum equations by assuming that the 
velocities appearing in the turbulence transport equations are known at each iteration.  The team also 
looked at several nonlinear anisotropic models that assume that the relationship between the Reynolds 
stress and the mean strain rate tensor is not linear but includes terms which are quadratic in the mean 
strain rate tensor as well.  These detailed investigations resulted in the selection of a specific 
nonlinear model. 

The first test cases for the two-equation turbulence models involved comparisons with 
analytical solutions for the spatial and temporal decay of turbulence.  The excellent comparison for 
the spatial decay showed the expected balance between convection and dissipation, while the excellent 
comparison for the temporal decay showed the expected balance between the unsteady and dissipation 
terms.   For fully-developed channel flow, the results for the two-equation turbulence model compared 
very well with empirical and analytical curves   Since the turbulence is roughly in "equilibrium" 
within the logarithmic region, the computations showed the expected balance between production and 
dissipation.  These models also showed excellent agreement with experimental data for flat-plate 
boundary layers and for the SUBOFF barebody, with some improvement over results using the 
algebraic turbulence model. 

The research team also used fully-developed channel flow as a test case for the nonlinear 
anisotropic turbulence model.  Analytically, for two-dimensional flow, one can show that the 
nonlinear model only modifies the normal Reynolds stresses in this case, but not the Reynolds shear 
stresses—and the computations show that the prediction of the anisotropy of the normal stresses is 
greatly improved.  In three dimensions, the agreement between the computations (for the stand-alone 
model) and the experimental data show that the nonlinear model is well-suited for the prediction of 
turbulence-driven secondary flow, a flow that linear models cannot predict.  Comparisons were also 
made to measurements on a 6:1 prolate spheroid at an angle of incidence.  Without any modifications, 
the nonlinear model closely captured the velocity profiles and flow angles and approximated most of 
the features of the Reynolds stress profiles.  Thus, the anisotropy of the normal Reynolds stresses 
greatly enhanced the predictions with the linear two-equation turbulence model. 

Prediction of a vehicle's trajectory requires coupling the fluid dynamics and the vehicle 
dynamics.  The vehicle dynamics can be described by the six vector equations of Newton's laws of 
motion.  These six-degree-of-freedom (6DOF) equations describe the acceleration of the vehicle at an 
instant in time, given the forces and moments due to weight and buoyancy and the hydrodynamic 
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forces and moments computed by the UNCLE code.  From this information, the trajectory can be 
deduced using purely kinematic relations.  For this research program, the UNCLE code provided 
these forces and moments at each time step to a subroutine that solved the 6DOF equations and seven 
additional kinematic relations using a fourth-order accurate Runge-Kutta-Merson scheme.  This 6DOF 
solver then updates the position and velocity of the vehicle.  After computing the new grid point 
velocities, the process repeats.  Run in a decoupled fashion, the UNCLE code contains only one 
nondimensional parameter, the Reynolds number, that can dictate the behavior of the flow.  However, 
when one runs UNCLE coupled with the 6DOF solver, there are 14 new, independent 
nondimensional parameters (such as nondimensional weight and buoyancy).  A change in any one of 
these 15 parameters has the potential to impact the resultant vehicle trajectory-making the prediction 
of the maneuvering characteristics of an underwater vehicle very sensitive. 

For the initial computations using the UNCLE code coupled with the 6DOF solver, the 
research team selected two freely-falling bodies at moderate Reynolds number: a sphere and a 6:1 
prolate spheroid.  These cases allowed the team to test the coupling without the additional 
complication of a turbulence model and without requiring arbitrary forces other than weight and 
buoyancy.  Both cases were initiated from a well-defined, uniform, non-stationary state, as computed 
from running the UNCLE code decoupled from the 6DOF solver.  Then, after computing with the 
coupled equations, a ring vortex on the leeward side of the free-falling sphere created large unsteady 
forces and moments that produced rotational kinetic energy, in addition to the initial translational 
kinetic energy.  The free-falling prolate spheroid consisted of a heavy material near the nose and a 
lighter material near the tail, and this density distribution provided a natural restoring moment and 
helped the prolate spheroid maintain its initial orientation.  The ring vortex on this body created 
unsteady forces that were an order of magnitude smaller than those on the sphere.  Only 9% of the 
total run time was devoted to computing the forces and moments and performing the vehicle dynamics 
calculations. 

The first vehicle maneuvers computed with the UNCLE code coupled with the 6DOF 
solver involved the fully-appended SUBOFF body performing very simple maneuvers.  Initially, a 
body-force model was used to simulate the propeller.  The maneuver consisted of only changes in the 
thrust provided by the actuator disc and the weight/buoyancy ratio.  The vehicle responded as 
expected to changes in thrust, while a weight reduction produced a net upward force at the center of 
gravity.  The resulting upward acceleration combined with the forward velocity of the vehicle induced 
a negative flow incidence, and this incidence, in turn, caused a significant downward hydrodynamic 
force and nose-down pitching moment on the vehicle.  Again, this nose-down motion was the 
expected result.  The next maneuvering test case used a rotating five-bladed propeller.  The dynamic 
response to changes in propeller thrust, or rotational speed, was immediate and consistent with 
physical expectations.  For instance, the propeller torque produced a rolling moment on the vehicle. 
For the next case, the research team applied an external roll moment to counteract the propeller 
torque and, also, applied an external yaw moment to simulate the beginning of a turn.  These 
externally-applied moments allowed the team to determine how much roll could be attributed to the 
lift generated on the sail during the turn. 

The final test case run during this research program illustrates the current status of the 
physics-based means of computing maneuvering characteristics and the potential utility of the code for 
maneuvering computations.  Here, the vehicle decelerated by means of reversing the angular velocity 
of the propeller.  This crashback maneuver represents the most severe off-design computation for 
flow through the propeller.  The flow outboard of the propeller moves opposite to the flow through 
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the propeller blades, creating a shear stress that generates a ring vortex.  This unsteady ring vortex is 
not symmetric, and it weakens as the vehicle decelerates.  As the propeller rotates, the ring vortex 
"touches" one or two propeller blades, resulting in low static-pressure patches on the blade surfaces. 
These patches rotate in the opposite direction of the propeller (and with a much lower frequency), and 
produce large-amplitude, low-frequency oscillations in the out-of-plane forces.  These oscillations 
combine with small-amplitude, high-frequency oscillations corresponding to the blade-passing 
frequency.  As a result of these unsteady out-of-plane forces and the other forces and moments acting 
on the vehicle, the vehicle responds by rolling, pitching, and yawing-motions captured by the 
UNCLE code. 

In summary, the research team has developed a physics-based method that will lead to a 
means of accurately predicting the forces and moments acting on a maneuvering, self-propelled, 
appended, underwater vehicle and the resulting vehicle motion.  This physics-based method solves the 
unsteady Reynolds-averaged Navier-Stokes equations and includes the effects of using parallel 
processing and two-equation turbulence models, as well as the coupling between the fluid and vehicle 
dynamics. The method has been tested for several steady and unsteady flow problems that verify 
various elements of the code and check the feasibility of calculating flow fields of varying 
complexity-leading up to the computation of the flow over a maneuvering vehicle and the vehicle's 
response. 

86 



12.  Future Work 

The team of researchers from the Engineering Research Center at Mississippi State 
University and the Applied Research Laboratory at The Pennsylvania State University have made 
tremendous progress towards developing a physics-based method to predict the maneuvering 
characteristics of underwater vehicles, but many issues still exist.  These issues are aimed at 
extending, improving, and exercising the method.  Until now, this first-of-its-kind research has 
focused on the development and verification of various components of the code~with a concentration 
on Reynolds numbers for which useful experimental data could be obtained.  However, for 
underwater vehicles such as submarines, the Reynolds numbers can be as much as two orders of 
magnitude greater than these model-scale experiments.  Thus far, only the SUBOFF barebody has 
been computed at these very high Reynolds numbers. 

As described in this report, the research team developed an excellent algorithm within 
UNCLE for solving the unsteady Reynolds-averaged Navier-Stokes (RANS) equations.  Nevertheless, 
new algorithms may arise in the future that better handle these types of maneuvering problems.  For 
instance, experience gained thus far in parallel computing for these types of problems indicates that it 
is easier to get access to processors than memory; consequently, one should try to reduce memory 
requirements as much as possible.  All future algorithms need to be robust enough to withstand the 
burden placed on them by the requirements of solving complex flow problems with extremely high 
Reynolds numbers on highly-clustered grids. 

Future applications of the parallel version of UNCLE for extremely high Reynolds 
numbers will require many more grid points and, in turn, more processors.  Since computational 
efficiency is known to degrade as the number of processors increases, additional research will be 
required to produce an efficient and robust parallel computational capability for these high Reynolds 
numbers.  Also, any future changes in the sequential algorithm for the flow solver will require work 
to develop a version for parallel processing.  In addition, a few items still need to be considered for 
the existing parallel code.  One example is a slightly different MPI implementation with user-defined 
datatypes that would avoid explicit buffer loading.  Finally, the parallel code still needs to be utilized 
for an actual maneuvering computation, including the coupling with the vehicle dynamics. 

The most pressing capability that the research team still needs to develop is the time- 
accurate motion of vehicle appendages.  These computations include the solution of both the unsteady 
RANS equations and the 6DOF equations.  Future computations that include complex propulsors with 
more than one blade row also need to be addressed.  Since sufficiently gridding each blade passage in 
each blade row will result in a grid that is extremely large, the research team should investigate 
simplifications that would reduce the number of grid points and still allow for the correct blade 
interactions and, thus, the correct out-of-plane forces.  Recent work by Chen, Celestina, and 
Adamczyk [1994] showed promise in modeling these aperiodic boundaries using a tangential 
time-shift approach.  Using this approach, only one blade passage per blade row is required for the 
computational domain.  The research team needs to investigate the use of this technique for the 
incompressible flow over a vehicle and through a propulsor with multiple blade rows. 

In order to increase the capability of this physics-based method, the research team needs to 
address the maneuvering vehicles operating in shallow-water environments or operating near or on the 
water surface.  These vehicles can operate at lower Reynolds numbers and must deal with unique 
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boundary conditions, such as free surfaces, cross currents, and solid or porous bottom surfaces. 
Surface winds and waves can also play roles-with mass, momentum, and energy exchanges. 

With regards to turbulence modeling, the results using the UNCLE code with an algebraic 
turbulence model were surprisingly good.  In the future, many of the test cases described in this 
report that the team ran with the algebraic model need to be repeated using the two-equation 
turbulence models that have also been investigated in this report-including the initial computations 
with the two-equation turulence model using the mulitgrid, multiblock capability.  These test cases 
should establish if these models offer significant improvements.  In doing so, the research team needs 
to ensure that they can use these two-equation models in a robust manner.  Furthermore, the team 
needs to address how well both algebraic and two-equation turbulence models work for extremely 
high Reynolds numbers.  Certainly, the effect of wall roughness on the near-wall turbulence structure 
will be magnified at higher Reynolds numbers, and these effects will need to be included in the 
future.  Flow fields for some maneuvers will have sufficiently small Reynolds numbers where the 
flow transitions from laminar to turbulent on the vehicle hull and/or the appendages.  Therefore, the 
research team will need to address issues involving the modeling of this transition. 

Specific issues on two-equation turbulence modeling also need to be addressed.  Some of 
these issues address the robustness of the code, the effect of freestream turbulence, and the behavior 
of these models in the vicinity of stagnation points.  For the low-Reynolds-number modifications of 
different two-equation turbulence models, the damping functions vary, and the research team needs to 
remove the dependency of these damping functions on the normal distance to the solid surface.  The 
work discussed in this report uses a "loosely coupled" system, in that the two turbulence transport 
equations are solved as a separate system from the continuity equation and the three momentum 
equations by assuming that the velocities appearing in the turbulence transport equations are known at 
each iteration.  The research team should also investigate a "strongly coupled" system, where all six 
equations are solved simultaneously.  Both systems will require investigations into the algorithms in 
order to improve the efficiency of the solver and reduce the CPU time.  Finally, the nonlinear model 
requires more testing, including a careful examination of its empirical constants.  These further 
investigations might also consider the use of "explicit algebraic Reynolds stress models." 

In order to couple the fluid and vehicle dynamics, the UNCLE code currently calls a 
subroutine that solves the 6DOF equations and seven additional kinematic relations.  However, for a 
real life maneuvering scenario, this process needs improvement.   Here, a main code must provide the 
executive commands to set the "state" of the vehicle, compute the response of the vehicle to these 
commands by solving the 6DOF and kinematic equations, and model the behavior of the ballast and 
other important aspects.  This main code would call UNCLE as a subroutine to provide the 
hydrodynamic forces and moments-with a module in between that would accept arbitrary control- 
surface angles and propulsor shaft rotation rates and, then, regrid and compute the "distortion 
velocity" for each grid point in the regridded blocks.  The flow solver requires the total grid point 
velocity as obtained by adding the "distortion velocity" to the grid point velocity from the gross 
motion of the vehicle. 

Future computations of vehicle trajectories will require a priori prescription of the motion 
of control surfaces and, yet, this prescription does not ensure controlled motion of the vehicle or the 
execution of a precise maneuver.  Vehicle maneuvers involve nonlinear dynamical systems where 
small errors in the initial conditions, including the a priori prescription of control surface motion, 
accumulate and could lead to large deviations in the anticipated trajectory and attitude of the vehicle. 



In other words, the computational errors from UNCLE may be small at each stage of the maneuver, 
but the accumulated error in the trajectory at the end of the maneuver may be very large.  Therefore, 
the main code requires additional systems of equations that represent the controller.  These equations 
can be simplified to allow computations of experimental maneuvers and, also, lay the groundwork for 
the incorporation of more elaborate and sophisticated control systems. 

The key ingredient in future work of all aspects of maneuvering computations is the 
execution of more and more test cases.  Again, these test cases will be used to validate various 
elements of the prediction method, improve confidence in the use of the method, and check the 
feasibility of using the method to calculate flow fields of increasing complexity.  Most importantly, 
the research team needs to run validation test cases with actual geometry for captive-model tests, free- 
running-model tests, and full-scale trials.  Grid generation issues need to be addressed for these test 
cases.  The flow fields must include a wide range of Reynolds numbers, including Reynolds numbers 
that are as much as two orders of magnitude greater than those tested so far.  Successfully addressing 
these technical issues and applying them to these various test cases will result in a physics-based 
means of accurately predicting the forces and moments acting on a maneuvering, self-propelled, 
appended, underwater vehicle and the resulting vehicle motion. 
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Figure 80. Snapshots of the Computed Contours of the «-Component of Velocity at the Plane 
of Symmetry for the Prescribed 15° Pitch-Up Maneuver of a Fully-Appended 
SUBOFF at Re = 12,000,000 
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Figure 81. Snapshots of the Computed Contours of the w-Component of Velocity at the Plane 
of Symmetry for the Prescribed 15° Pitch, 5° Yaw, and 5° Roll Maneuver of a 
Fully-Appended SUBOFF at Re= 12,000,000 
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Figure 92. 
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Computed and Measured Static-Pressure Distributions on the Inlet Guide Vanes of 
HIREP at Re = 2,300,000 
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Figure 100. Snapshot of the Particle Traces Looking Up Towards the Bottom of the Appendage 
at 10  Deflection of a SUBOFF Stern Appendage Moving Over a Flat Plate at 
Re = 12,000,000 
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Figure 101. Convergence Behavior of the Parallel Algorithm for the Lateral Force Coefficient 
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Figure 103. Unsteady Decay of q and co in Homogeneous Turbulence 
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Figure 111. Velocity Profile for a Flat Plate Boundary Layer at Rex = 4,000,000 
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(a) Orientation 
(b) Position 
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Figure 121. Particle Traces in the Relative Velocity Field for the Free-Falling Sphere Showing 
the Location of the Lee-Side Ring Vortex 
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Figure 122. Schematic of the Free-Falling Ellipsoid Calculation 
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Integration of the Kinematic Equations: 
(a) Orientation 
(b) Position 
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Figure 125. Particle Traces in the Relative Velocity Field for the Free-Falling 6:1 Prolate 
Spheroid Showing the Location of the Lee-Side Ring Vortex 
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